JDF
Specification

C\ TM
ngamﬂ“w

Page ii

Comment conventions:

“tbd” means more work is needed by a WG or Rainer.

“tbd” with “Done” means the TBD is ready for WG or TSC review.
“AMC Done” - Done by Ann McCarthy
“DP WG Done” - Digital Printing WG

“added”, “accept”, or “modified” (without “tbd””) means agreed by a WG or Rainer and is ready for TSC
review

“+” means the TSC has approved the addition or change.

“rejected” means the TSC did not approve for JDF/1.2.

Page ii

Page i

Copyright Notice

Copyright © 2000-2003, International Cooperation for Integration of Processes in Prepress, Press and
Postpress, hereinafter referred to as CIP4. All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of the Specification and
associated documentation files (the “Specification”) to deal in the Specification, including without
limitation the rights to use, copy, publish, distribute, and/or sublicense copies of the Specification, and to
permit persons to whom the Specification is furnished to do so, subject to the following conditions. The
above copyright notice and this permission notice must be included in all copies or substantial portions of
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT WILL CIP4 BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SPECIFICATION OR
THE USE OR OTHER DEALINGS IN THE SPECIFICATION.

Except as contained in this notice or as allowed by membership in CIP4, the name of CIP4 must not be

used in advertising or otherwise to promote the use or other dealings in this Specification without prior
written authorization from CIP4.

Licenses and Trademarks

International Cooperation for Integration of Processes in Prepress, Press and Postpress, CIP4, Job
Description Format, JDF and the CIP4 logo are trademarks of CIP4.

Rather than put a trademark symbol in every occurrence of other trademarked names, we state that we are

using the names only in an editorial fashion, and to the benefit of the trademark owner, with no intention
of infringement of the trademark.

Page i

Page ii

Page Intentionally Left Blank.

Page ii

Page iii

JDF Preface and User Overview

This specification is immense ... there little doubt about that ... but it is also a keystone standard
for the future of graphic communications. The members of CIP4 believe that users and developers
alike should have a clear understanding of what the objectives of the Job Definition Format (JDF)
are as well as an understanding of its value and purpose. To that end we thought you would find a
“non-standard” preface and user overview helpful.

Before we get into the overview, we remind you that JDF is a living specification. We would
value your comments and input. There are several ways to contact the International Cooperation
for the Integration of Processes in Prepress, Press and Postpress (CIP4) association and to
receive ongoing information about CIP4 activities. To get a list of contacts, join the JDF
developers form, or sign up for email updates, visit the contact page at http://www.cip4.org/. (Of
course, we’d love to have you as a CIP4 member too! Be sure to review the membership page
when you visit the CIP4 Website.)

You will also find callouts throughout this document that are identified by three different
icons. These callouts, provided for your convenience, are not normative parts of the standard
(i.e., they’re not technically a part of the standard). They provide references to external sources,
executive summaries of complex technical concepts, and some thoughts or strategies you may
want to consider as you formulate your JDF implementation plan. Look for these callout icons:

Icon Callout Type

. : External references to online resources, related
g standards, tutorials, and helpful information.

25 Executive-style summaries of technical concepts in
' " easy to understand language.
; ’ Thoughts to ponder and strategy ideas for
formulating JDF implementation programs.

Value. This revision of JDF is significant because it builds upon the second version of JDF
(v.l.1a)re2) to deliver a fully functional and mature standard. As such, this revision includes
elements from which executives, shop managers, and technicians will all benefit equally, though
in different ways. In the next few years it is our belief that this specification will positively effect
everyone involved in the creation and production of printing; regardless of form (offset, digital,
flexographic, and so on) or function (direct mail, periodical publication, packaging, and so on).
Furthermore, JDF will be of value to companies both large and small. Some of the benefits that JDF
may provide include:
e A common language for describing a print job across enterprises, departments, and
software and systems;
e A tool for verifying the accuracy and completeness of job tools;
e A systems interface language that can be used to benchmark the performance of new
equipment (hardware and software) and that can reduce the cost of expensive custom
integration for printers, prepress services, and others;

Page iii

Page iv

e A basis for total workflow automation that incorporates Implementation
all aspects of production: human, machine, and Strategy
computer;

e A standard that can be applied to eliminate wasteful
rekeying and redundancy of 1nf0rmat19n; :emd consider how to make JOF &
e A common computer language for printing and related | part of your equipment
industries as well as a platform for more effective | evaluation and purchasing

communication. procedures. Should you add

. . . JDF enabled systems slowly
Most importantly, JDF provides an opportunity for users of with equipment replacement

graphic arts equipment to get a better return on their technology | and upgrades, or aggressively
investment and an opportunity to create a print production and | as part of a plant
distribution workflow that is more competitive with broadcast | reengineering process? What's

media in terms of time-to-market. your desired competitive
nnsitinn?

As you read this standard,

XML and Schema: Why? The Extensible Markup Language (XML) is the standard language
that is employed by JDF. JDF is also constructed to the World Wide Web Consortium’s (W3C)
recommendation for the construction of schema. Why is this important and, in layman’s terms,
what does it do for you?

First of all, it is helpful to understand how MIS professionals around the world use XML
today. Although there are some systems that manage and process XML directly, it is primarily
used as an exchange language or “middleware” element to create the “glue” that ties integrated
systems together.

For instance, complex systems such as enterprise resource planning (ERP), data warehousing,
or E-commerce systems often tap into numerous legacy databases and application environments. A
manager may wish to have a
“view” of corporate information
that is actually an aggregate of
information that may come from
various sources such as billing
and invoicing, sales management,
inventory, and other systems.
Rather than merge these systems
into a single, monstrous and
centralized system, an operator
queries the legacy systems and
the results are wrapped in XML. S
This allows programmers to deal =
with one exchange language or R et
data format instead of a multitude BRI
of proprietary data formats.

XML is not a functional computer language like JAVA, C++ or FORTRAN — it is incapable
of manipulating data in anyway; rather, it is a descriptive computer language that can be used to
describe your information including its structure, interrelationships, and to some extent, its
intended usage. For this reason, modern program languages such as JAVA provide intrinsic
support for XML processing. Most modern database applications also provide methods for
receiving and delivering XML.

HTML
Internet

s Browser

Accounting
& Financial

Page iv

Page v

Early XML, based solely upon the XML 1.0 specification, had a
few limitations that prevented it from being used widely as a r XML
transactional data format across enterprises, as opposed to within '
enterprises (where it found its niche as described above.) For Q Schema
example, there is probably a database behind each of your major
systems and applications. If your database has reserved a fixed | To learn more about XML
space a data particular field and a supplier provides a transaction | Schema, including tools, usage,
. tutorials, and other resources visit
with a datg e@ement larger than that field, you hgve a problem. http://www.w3.org/XML/Schema
The data limitations of XML 1.0 cannot effectively deal with

this. The XML Schema specification solved this problem and
others.

The Pluses of Parsing. Schemas also provide one other feature that is perhaps the greatest
benefit. Tagged documents or transactions (called “instances” in XML parlance) are parsible.
Schemas, such as JDF, establish rules for structuring your information. A parser is a software
application that reads those rules, checks documents and transactions, and then validates that
they conform to the rules as established in your schema ... sort of like preflighting but for XML

instances rather than your layout pages.
' Free
Parsers

C . .) The JDF schema was validated
2. Validation of JDF prior to or following transformation of | with the Xerces parser. This

data into and out of databases. parser, as well as other XML

: ST S tools, is available for free from
3. Ensuring that source job information is collected as a The Apache Software Foundation

document is created. (Embedded in document layout open source software community
software.) at http://xml.apache.org/

4. Determining if equipment reads and writes Job
Messaging Format (JMF) commands, a subset of JDF, as part of equipment benchmarking
and testing software.

Parsers can play many roles. Like preflighting software,
parsers can be run as standalone applications, but they can also
be found embedded into other applications. Some of the roles
parsers may play in your JDF-enabled workflow include:

1. Acceptance checking of client job tickets.

5. Controlling the movement of workflow information and controls within workflow
software, from process to process and as a specific JDF job ticket requires.

6. Working as a middleware component to communicate between JDF-enabled software and
systems and your legacy Management Information System (MIS) and corporate
applications environments.

It is worth mentioning that parsing can be time consuming and computer intensive. But parsers
don’t have to be the gatekeepers everywhere in a JDF-enabled workflow. Equipment that is JDF-
enabled and part of a company’s internal production operations need not parse every
communication. It can be limited to equipment evaluation and problem solving applications.
The role of JDF parser-enabled software in a printing plant that uses tightly coupled JDF-enabled
print production equipment might look like this:

Page v

Page vi

Managemant
Raparting

Accounting &
Financial Syslams

Al

Suppliers

Customers

Other Document Sources
(Preprass services,
3" Parly Designars, alc.}

Distribution

JDF Enabled Prepress, Press, and Postpress Operations

Global Printing Company

The JDF Concept. The JDF schema is quite complex and detailed — something best left to
programmers, MIS personnel, and XML experts. But the language and concepts behind JDF are
quite simple and straightforward. The schema itself can be downloaded from the CIP4 Website, but
is not part of this specification. Instead, this is your “cookbook.” It provides an explanation of each
of the components of JDF, its meaning, and intended usage. You will want to use the components of
JDF that fit best with your workflow and the needs of your customers. To start, a basic understanding
of the concepts behind JDF is in order. There are three primary components to JDF:

1. JDF itself,
2. The Job Messaging Format (JMF), and
3. The MIS system.

JDF is simply an exchange format for instructions and job parameters. You can use PDF, or its
standard variant (PDF/X), to relay production files from one platform to another. You can do the
same with JDF to relay job parameters and instructions. JDF can be used to describe a printing
job logically, as you would in exchanging a job description with a client within an estimate. It
can also be used to describe a job in terms of individual production processes and the materials
or other process inputs required to complete a job.

There is no such thing as a standard print workflow. In fact, printing is the ultimate form of
flexible manufacturing. This makes process automation quite a challenge for our industry. What
you’ll find in this standard are XML element definitions that describe all the production
processes and material types you’re likely to encounter, regardless of your workflow. These are
the building blocks that you can use to emulate your workflow with JDF. As a matter of
convention, processes such as preflighting, scanning, printing, cutting, and so on are referred to

Page vi

Page vii

as process nodes. Every process in the print production workflow requires input resources
starting with the client’s files or artwork and ending with the final bound, packaged, and labeled
print product. For example, before you can print, you need paper, ink, and plates, and before you
can send a document to a bindery line, you need printed and cut signatures.

Process nodes and resources
are the basic elements within
JDF. They can be strung
together to meet the
requirements of each job. The
output of one process becomes
the input of the following
process, and a process doesn’t
begin until its input resources are
available:

Node 1

This specification provides details on how to use these
building blocks to describe concurrent processes, spawned
processes, dynamic processes, and so on. To realize the
capabilities of JDF, there are two other things you will need: a
way of controlling the flow of process and a way of
communicating commands to equipment on the shop floor.

JMF is a subset of JDF that handles communication with
equipment on the shop floor. This may include major equipment,
such as platesetters, or subsystems, such as in-line color
measurement devices. JMF can be used to establish a queue,
discover the capabilities of a JDF-enabled device, determine the
status of a device (e.g., “RIP’ing,” “Idle”), and so on.

Although, theoretically, you can string together equipment
that supports JMF directly to one another, in almost all cases you
will want your production equipment to communicate with your

output Resource input

Example:

Node 2

JMF

The Job Messaging Format
(JMF) functions as a standard
interface between your
equipment and your
information systems, or other
equipment already on the
shop floor. By buying only
equipment that supports JMF
you will reduce the cost and
complexity of integrating new
equipment into your
production operations, and
you will improve the flexibility
and adaptability of your shop.

MIS system. This way it is the MIS system that controls the scheduling, execution, and control of
work in progress. The role of the MIS system is described within this standard, but it isn’t highly
defined. In fact, the JDF standard does not dictate how a JDF system should be built. Many
printers, prepress services, and other graphic arts shops will already have MIS systems in place.
JDF enabled workflow and MIS systems, custom-tailored to print production requirements, will
soon be available on the market. However, many printers already have MIS and workflow systems
that have been customized or developed for their own environments. In most cases these legacy

XML & Databases

&)

To learn more about how XML and database work together, check
out the white papers and tutorials available from XML.org at
http://www.xml.org/xml/resources focus rdbms.shtml.

Page vii

systems can be modified to
work with the new JDF
workflows and JDF enabled
equipment. There are a
variety of XML support tools
available on the market to
address the databases
underlying all MIS systems.

Page ix

Table of Contents

L0 o o) V7 T |41 e o i
Licenses and Trade@marksccoceeriirsrermimsrerimssrr s rssss s s s s as e e s s s e massan s enssann e mnssannenans i
JDF Preface and User OVerVIEW.......ciiiiniisiiis s ss s s s s s s s ssms snsns s iiii
Table Of CONtENES......cocceiiiiir e ————————————— ix
LK1] L= 1 o 10 =Y S XXiv
{0 S T=1 o £ i SR T £ Yo 1102 £ T o S 1
1.1 Background On JDF ... e 1
1.2 Document REfErENCEScciiiiiiiiiiiir i e e 1
1.3 Conventions Used in This Specification..........cccccocmiiiiiiininnii e 2
I T B o5 (A (T OO OSSR SSU TR UUPRS PR 2
1.3.2 Specification 0f CardiNalify..........c.eoeriiiiiieiie ettt ettt st ettt eae et e e e beeeeebe e st eneeneeneenes 3
1.4 Glossary Of TerMINOIOGYccccerrrririrrrrsrrrrsssnreresssseeresssssersssssmeerssssmresssssmnesesssnneeesssmenssssnsasssnnens 3
1.4.1 Conformance TeIrMINOLOZYccveeiirieiiieiierieerieeteettesteesteeteeteestesteesseesseassesseesseesseesseessesssesssessenssesssesssensens 5
1.4.2 Conformance Requirements for JDF ENtItIES........ccieciieierieiiieiieieiiesieeieeee et sae et eseeseeesseeseesseessesssesseas 6
1.42.1 Conformance Requirements for Support of Attributes and Attribute Valuesccoevrvereverveneennne. 6
1.4.2.2 Conformance Requirements for SUpport 0f RESOUICES..........ceerieriieiiieiieiecieiee et 6
1.4.2.3 Conformance Requirements for SUPPOIt Of ProCESSES.......cuevveriieriieiiieiieiecietee et 6
1.4.2.4 Conformance Requirements for Support of Combined Processes..........cocceeverienieierieniieneereee e 6

1.5 Data StruCtUres.......cceiiiiri 7
I U 3T 9
Chapter 2 Overview Of JDF ... s mm s e 1
2.1 System COMPONENTS......ciiiiiiiiiiiirr i a e e e a e e nnn e e s 1
211 JOD COMPONENLSvvieueiieiieeiieestieeiteeteeeteeeteesseeeaeessseeaseessseessseessseesssesssseessseessseessseessseensssessseenssessssesnsseenss 11
21101 JODS QN NOGES ...ttt b et a ettt et b e eb e e bt et et et e bt eb e st eat et entes 11
21012 ELRIMIEILS ..ttt b ettt e bbbt bbbt et et e b et bbbt et et e bt bt bt eneent et enten 11
21013 ATITDULES ettt st b e ettt b e s et bbbt e a e e st e e ea e bbbt e st et e bt bt bt e st ea s et enten 11

B O T S YV o 0) 1SR 11
21015 LNKS ittt ettt h e bt bbbt et et et b e sh e bt bt et et eneen 12
2.1.2 Workflow Component ROIES........c.cccuieiirierieiieie ettt ettt ettt et ssaeseae st e e e eseensessnesseesseenseenseans 12
2.1.2.1 MACKINES...c.etieiiiieeiiee ettt ettt e ettt e ettt e st e et e e s tbeesaeeestbeessae e sbeesseesbeassaeesbeesseesseesaeesseeseeesaeensneenns 12

B B A D 1< 4 oS POPUR 12
21,203 A IS ettt h et a e e a e e bt e bt e bt et et eateehe e bt e bt en et enteebeenbeebean 12
21,24 CONIOLLELS ..ttt ettt ettt h e b ettt e et e s bt e s bt e bt et e eateebeeebee bt em bt enteebeenbaenbees 13
2.1.2.5 Management Information Systems—IMISccocioiiiiiiiiiii e 13
2.1.2.6 SYStEmM INTETACLION ...c.veeuiieiiiiieiiieiiecieete ettt et ste e e eveeeaeetaeste e seesbessbesseesseeseesseesseesseassesseessenssessaessens 13

2.2 JDF WOTKFIOWcoiiiiiiieiiiis i s s s s s s e p e a e e e 14
22,1 JOD STIUCTUTE. ...ttt ettt ettt ettt ee st e et et b e s bt eb e e bt eat et en et e et e eb e ebeebeesten b e b et e besbeebeeneensenaentes 15
2.3 Hierarchical Tree Structure and Networks in JDFcccccimnnminninis s 17
2.4 Role of Messaging in JDFcooiiiiiiiiiccisemrre s issssssssssss e s s sssssssssssss s s s s ssssssssssnsssnsssssssssnsnsssnsanssnn 18
2.5 Coordinate Systems in JDF ... issssssssses e s s s ssssssssssss s s e s ssssssssssnesssssssssssnsnsssnsssnsnn 19
s T O 1313 (014 1017 5o s SRS 19
2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF.............ccooiviiiiiiininninncnns 20
2.53 Coordinate Systems of Resources and ProOCESSEScueiiiiiiiiriiieieeierieieeie et ens 20
2.53.1 Resource Coordinate SYSEIMIS.cc.eeuiriiriirtieniteteeteetient et eete e testte st e bt e teseesatesbee bt enteeseesseenseesbeenaeas 20
2.53.1.1 Layout Coordinate SYSTEM......cccueruiiiirieriieitieie ettt sttt ettt st st e et et eaeesbeesbeenbeas 20
2.53.1.2 Component Coordinate SYSTEM........ccueruirieriieriieiieieetierieet ettt ettt sttt et et sseesbeenaeas 20

Page x

2.5.3.1.3 ExposedMedia Coordinate SYSLEIMcccverrieriieriieieeiesiesieesieeseseeseesseesseesseessesssesseesseessesssesses 21
2.5.3.1.4 Media CoOrdinate SYSTEM........ccieruiiiieiieriertiertieteeteeeesteeseesesaeseeesseesseessesssesssesseesesssesssesssensees 21
2.5.3.2 Process CoOrdinate SYSTEIMScccuerueriierieriieieeiteeteseertteteeteetesetessaesseeseesesnsesssesseenseenseensesssessaessees 21
2.53.3 Coordinate Systems in COMDINEd PIOCESSEScveeuverrrerrierrierirererrertesseesseesseereseesseesseeseesesssessaessens 21
2.53.4 Coordinate System TranSfOrmMatiONS.ccueecveruierierieeieeieseeseeteetesee st e e eeeeseessaesseeseenseessessnensees 22
2.5.4 Product Example: Simple BroChUIEcc.ooouiiiiiiiiee ettt 24
2.5.5 GENETAL RULES ...ueiiiiieiiie ettt ettt et e e et e bt et en e e s e e e b e e bt e te e et enteeneeeneenteeneens 28
2.5.6 HomOZENEOUS COOTAINALES. ... eeuieueieuiieiieetiestiett et eite et et e bt e bt ete et e st e e te e et enteeneeeseesseeseenseeneesnnesseesneanseenseans 29
Chapter 3 Structure of JDF Nodes and JODS ... s 31
B N |] e o T 1= 33
3.1.1 Generic Contents 0f JDF EISIMENLScciiiiiriiieieiee ettt sttt ettt s ene et e e nnens 33
3.1.2 Fundamental JDF Attributes and EICMENtSccoevuerieiiieiiiiieiie sttt se e 35
3.2 COMMON NOAE TYPES ..ocercererrremrerrssmrersssamrerssssmresssssmsessssssesssssnnesssssneesassansessnsansessnsansessnsanserssanes 40
3.2.1 Product INtENt NOGESccuieiieiieie ettt ettt ettt te st et e b e e besaaesseesseeseenseenseessesssessaesseenseensesnsennns 41
3.2.2 ProCesS GIOUP NOGESocvieeieiieieiiesie st eie ettt e sete st et e enteesteseaesseesseenseensesseesseaseenseenseessesssessaenseenseensennsennns 41
3.2.2.1 Use of the Types attribute in ProcesSGroup NOAES.........c.eeveruieriieierienieieerieeeeseeseeseeeee e enesseeneeens 42
3.2.2.2 ResourceLink Structure in ProcessGroup n0des..........cceeveriiriinienieiieieeeseesie e e 42
323 Combined ProCess INOGESccuiiiiiiiiiieitieie ettt ettt ettt ettt et st e e et e te et e et e eneeeseeebeesseebeenseeneeenes 43
3.2.3.1 Combined Process Nodes with Multiple Processes of the Same Typecccevevevierienieiiierieeee 43
3.2.3.2 Examples of Combined Process NOGEScceevuiiiiiiiiiiiiiciiciieieste ettt sttt re s e 44
324 PrOCESS INOGES ...ueeieiiiieetietie ettt ettt ettt ettt e bt s heeb e eaeea e ea e e e et e ebeebe e bt eeeeseeneense s e seabesaeebeeneene et ensenen 44
B R Y 4 Y 4 e =X =3 o o o) 44
3.4 Customer INfOrmation...........ooccociiiiccic e e e e e e e e e e e e 46
B TN 1o e T8 1o ¢ .4 P 1o o R 47
B - R 10 1= oo o R 49
BTN =TT oL o 50
371 RESOUICE CIASSESveuieutiiiiiniietieitetete sttt sttt ettt ettt s b s bt bt e at et et e st e b e s bt bt e bt ese et et et enbesbeebesbeebeentesnentens 55
3711 Parameter RESOUICTES....c..eeiiuiiiiiiiiiieiie ettt ettt ettt ettt et e st e st e st e st e st e esabeesabeesabeesateesabeenanes 55
3.7.1.2 TNEENTE RESOUICES. ...ueeutieiieiiietiete ettt ettt et e e te s te s e e sae e teeaee e st e esee st enteenteemeeeseeaseesneeseensesneesaeenseanseans 56
3.7.1.3 Implementation RESOUICES.........couiiiiiiieieiiieeieee ettt ettt st esae et e eneeeneeseeeneeens 56
3.7.1.4 Physical Resources (Consumable, Quantity, Handling)ccccoeeeriiiieniiniieiie e 56
3.7.1.5 PlaceHOIAET RESOUICESc..eeuiiuieiiiiitietieit ettt ettt sttt et e at et et e e sae et e ebeeaeebeeneenseneens 58
3.7.1.6 SeElECtOr RESOUICTESccutieutientiiiiieiiestie ittt ettt ettt sh e sttt et ea e e b e sb e e bt et e e saesbtesbeesaeesbeenteenteans 58
3.7.2 Position of Resources Within JDF NOGEScccciiiiiiiiiiiiiiiieitce ettt be e ees 58
373 PIPE RESOUICES ...ocvviviieieiietieie ettt ettt et e e et e s te et e esbeesbesssesbe e seesseessesseesseenseesseesseassenssesssesseesseenseassensns 58
3.74 ResourcelUpdate EICMENTS.ccciiiiiiieiiiiieiiete ettt ettt e st e steesbesaesseesaeesseesseesseessessaessaesseesseensesssensns 60
3.8 ReESOUICE LiNKS.....ccciiiuiiiiiniieniiis i s s e n e e 61
3.8.1 Links to Parameter RESOUICESccieriieiiieiieiieiieieeie sttt ettt et et ete et e esaessee s e enseensesssenseenseensesnnennns 69
3.8.2 Links to Implementation RESOUICESc.eecuieieriieriieieeiesteeeerie et te et ettt et e st e e ensessaesneenseenseennesnns 69
3.8.3 Links to PhySiCal RESOUICES.......cciiiiieiiiiieiieiieie ettt sttt ettt ettt et es e s beesbe e seenaeeneeenes 69
3.84 Links to PlaceHOIder RESOUICES.couiiuiiiieiieit ettt ettt sbe e e ae e e 71
3.8.5 Links tO INteNt RESOUITESeeitiiiiiiieitieitieie ettt ettt ettt ettt e ete et e st e bt et e eneeeseeeseesne e seenseeneeenee 71
3.8.6 Inter-Resource Linking Using ReSOUICEREL..........ccooiiiiiiiiiiiiie e e 72
3.8.6.1 Status of Resources That Contain rRef Referencesccocereiiiiiiiiiiniieeeceeeeeee e 73
3.8.6.2 Alignment of ResourceLink and ResourceRefcooieiiiiiiiiiiiiee e 74

3.9 Subsets Of RESOUICEScccceceeciriiriierirssmrersssmr e s ssssmr e s ssssss e e ssssmn e s ssssane e ssssameessnsmsessnsansessnsansesnsnns 74
3.9.1 RESOUICE AINOUNL......eiitiiiiitieitieiterite ettt ettt ettt et et et sbtesbeesbee bt eaeeateebteebe e bt et e eabeebsesbee bt enseemtesmnenaee 75
3.9.1.1 Specifying Amount for a partially completed ProCesS........covevvieciirierieriierieeie e seesre e eeeeeesreeseens 75
3.9.2 Description of Partitionable RESOUICEScc.eecuieiirieiieiieieeie ettt seeseenneses 76
3.9.2.1 Amount in Partitionable FESOUICESecuvervieriieieeiesiereierie et eteettesteeseesesstessaesseesseeseensessnesseesseenseens 77
3.9.2.2 Relating PartIDKeys and PartitiOnsccccveriereierierienieeieeieeiesieeeeieetesaesseesseessessesseesseesseenseens 77
3.9.22.1 Incomplete PArtitiONSccoiieiieiiieiieiee ettt ettt ettt et s s ettt e e s aeeneesaeesaeeneeeneeens 77
3.9.2.2.2 Multiple Keys per partitioned Leaf or NOdeccoeviiiiiiiiiiieeeeee e 78
3.9.2.2.3 De@eNerate PartitiOnscueieiruieriieitieiieiteetieit ettt sttt ettt ettt et et e bt st st sbee st e et et ens 78

Page xi

3.9.2.3 Partitioning of Resource sub-EICMENtS..........cccccueiiiriiriieriiiiieieceeieeie ettt seeesaeese s e 79
3.9.2.4 Additional Attributes for use with partitioned RESOUICES.........c.occviviirierieriieieiie et 80
3.9.2.5 Options in INtent RESOUICESccveriieiiieieiieeierieerte ettt e stte e e estessaesseesseeseensessnesseenseanseans 85
3.9.2.6 Locations of Physical RESOUICESc.ccieriiriiiriieiieiierieeie et ettt sae s e sseesseesesnneseeeseeenseenseens 85
3.9.3 Linking to SUDSEtS Of RESOUICESeeciiiieriieiieiieieeiiettei ettt ee st e te et enteessessaenseesseesesnsesnnennns 87
3.9.3.1 Handling Amount in a ResourceLink to a Partitioned Resourceccccoeveriiiiiiinienieceeees 87
3.9.3.2 Implicit and Explicit PartUsage in Partitioned ReSOUICEScccoceeririieiiiniinieiieiee e 88
3.9.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple ResourceLinks..............ccccceeuee. 89
3.9.4 Splitting and COMDINING RESOUICESeeueiuieiiriiteitietietteiieieee ettt sttt ettt eseeee e stestesbesaesbeeseeseeseeneensesens 90
3.10 U Lo 11 o o N 90
3.10.1 AUt EIBIMEITS ...ttt s b e b e bttt ettt e bt e s bt et e et eateeb e e e bt e bt e beenbesaeeneee 93
3.10.1.1 PrOCESSRUI ...ttt bttt ettt st et e e 93
3.10.1.2 NOUFICALION .oueitete sttt b et a et et et s bbbt ebeeb e e st e e e st e st e ebesbeebeeneenteneens 94
3.10.1.2.1 NoOtificationDELAILSeoueeuieiieiiitirtieteseeee ettt ettt st 95
3.10.1.3 PRASETIIMIE. ...c..eveiieietestet ettt ettt b e et be st ebe et et et seeebe et enbenaen 95
3.10.1.4 RESOUTCEAUMIL ...coutintitetietiettetet ettt ettt et b e st be bt ebt et et e besaeebe et entenaens 97
3.10.1.4.1 Logging Machine Data by Using the ResourceAudit............ccecereeriinieniiineiienieceeeeeeeeee 98
3.10.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit............cecceeeiriinrennenne 99
3.10.1.5 (5 (2 (T PP 99

T L T T B 1< 1517« F OO OO T USSP USRS 99
3.10.1.7 MOIFIEA .ttt ettt b ettt ettt a e bt et en et et e b et e bt eneene et eneenes 100
3.10.1.8 N F 0 1 1<« OSSP PUUSR 100

T 20 Y, (' cTs BTSRRI 100
3.1 JDF EXtensibility......coooiiie 101
3111 NameSPACES 1N XIML.....oiiuiiiiieiiiiieieeie ettt ettt et este e teesbeesbeesbessaessaeseesseassesssesssesseenseessesssenssensensens 101
3.11.1.1 JDF NAIMESPACE ...eeuvveeiiieeiiieniiieeiee sttt ettt e st sit e ste e sttt e sate e sttt e sabeebteessbeenbteessbeenbeeensbeenseeesaseennes 102
3.11.1.2 JDF EXtensSion NAMESPACEcccverueerrierueerierrereesseessteseasesssessaesseessesssesssesseesseesseessesssesssessesssesnsens 102
3.11.2 EXtending PrOCESS TYPES....cccveeieiieriieitieieetesiesiteste et etesttesseeseeseessessaesseesseesseenseenseessesseenseansesnsesssessennsen 102
3.11.3 Extending EXiStINg RESOUICES.coiuiiiiiiiiiiirieeiett ettt et st e st e te et e et e eneesneenneas 103
3.11.4 Extending NMTOKEN LiSTS......cctirteiuiiieiieiieriteitt et etieetee st et eteeseesitesseesseeeeeeesaeeeseesseenseenseenseeneesseennean 103
3.11.5 Creating NEW RESOUICESc.eeiuiiitieiiieie ittt ettt et ettt e et esa e s et e et e et eneeeseesseesseenseenseeneenseennean 103
3.11.6 FUture JDF EXEEINSIONS ...eouviiuiiitieitietiiieiite sttt ettt ettt et et et e s bt e sb e e bt e bt e et sateseeesbee bt enteestesseenbeennean 103
3.11.7 Maintaining EXEENSIONS ..c..certietieiieiieiiteit ettt ettt ettt e b et e e et et satesbeesbee bt enbeestesbeenbeennean 103
3.11.8 Processing UnKNOWN EXTENSIONScc.eecuiiiirieniiesiietieieetieseeteeseesesaesseesseessesssesseesseesseessesssesssssssessesssees 104
3.11.9 Derivation of Types in XIMLSCREMAcccoiviiiiiiiiiiieiieieceeece ettt sb e sbeesaessaesseenees 104
3.12 B 1T Y= =] oY T 3V 104
3.12.1 JDF Version REQUITCIMENLSccveriiriieiieiieriesieete et etesteessteseeseesesaessaesseesseesseanseassesssesseessesssesssessesnsens 104
3.12.2 JDF Version DEfINItIONceeeutiiiriiriniintinieiiiet ettt ettt sttt ettt et sbe et ebeebeeae et esaenee 104
3.12.3 JDF VErSion POLICIES ..c..eoueeuiiuiiiiiinieriesieeieetetet ettt sttt ettt ettt s se bt eesaenee 104
3.12.3.1 JDF Specification Version POLICIEScccueeieiieiiieieeiecierieeie ettt 105
3.12.3.2 JDF Schema Version POLICIESc.coruiiiieiieiiesieieeie ettt seeas 105
3.12.3.3 JDF Application Version POLICIES.cccuiiiiriieiieiieiee ettt 105
3.12.3.3.1 JDF Agent Version POLICIEScciriiiiieieieiesiesieeie ettt sttt s eae e enee e 105
3.12.3.3.2 JDF Device/Controller Version POLICIESccciririririeieeieseeie e 106
Chapter 4 Life Cycle of JDF ...t s s s s 107
4.1 Creation and Modificationcccvciinininiiinnn i ——— 107
4.1.1 Product INtENt CONSIIUCESco.erueeuieiieieiertietest ettt ettt sttt et ea et et e st et ebe s bt eb e esteat et e nteebesbeebeeseennennens 107
4.1.1.1 Representation of Product INTENTcccviveiiiiiiieiieii ettt esse s e 108
4.1.1.2 Representation of Product Binding..........c.ccccovierierieiieiieieeieeeeee et 108
4.1.2 Defining Business Objects Using Intent RESOUICEScecvriierierieniieiieieeieseeie e 108
4.1.3 Specification of Delivery of End Products..........coooieiieiiiiiiiesieie ettt 110
4.1.4 Specification of Process Specifics for Product Intent NOdEsccceoieiiieiiiiinienieeeeceeeeee e 110
4.2 Process ROULINGccoiiiiiiiiiiiiir it e s e s 111
4.2.1 Determining EXecutable NOGEScoeiiiiiiiieieesee ettt et ae e e eens 112

Page xii

4.2.2 Distributing Processing to Work Centers 0r DEVICESccueveerieriieniieieeieseesieesieereeeesreessaeseesessneseneses 113
423 Device / CONIOIIEr SEIECTIONcuiiiiiiiiiieiieiieietestestet sttt ettt ettt et et b st sbe bt ebe e eseennens 113
4.3 Execution Model.........ic s 113
4.3.1 SEIIAL PTOCESSINE ...vvevieiieiieiieiiesitestteit et et e sttestee st ete e beeaesaeessee st enseanseesseessasseasseensennsanssesaenseensennsesnnennes 113
4.3.2 Partial Processing of Nodes with Partitioned ReSOUICESccceerieriieiiiierieieece e 114
4.3.3 Overlapping Processing USING PIPes........ccoeiirieiieiieiieieeie ettt 116

4.3.3.1 Pipes of Partitionable RESOUICES.........cciiiiiiiiiieieeiee ettt sttt e e 118

4.3.3.2 DYNAMIC PIPES . .uiiiiiiiiiieeeiieet ettt ettt ettt ettt et et e e b e b e e bt e be ettt e eneenae e teenteens 118

4.3.3.3 Comparison of Non-Dynamic and Dynamic Pipes.........cccceeieierieriininiiiiieieeeie e 119
434 Parallel PrOCESSINEeoueiuiieiitieiietieitei ettt ettt ettt et ettt s et et e e st es et e e e seeeeebeeaeeseemtensensesseabesseeneeneeneennans 119
4.3.5 TEETALIVE PIOCESSINEeeueitiieietieiieii ettt ettt ettt ettt e bt e ettt e st e st et et e e be s et eb e e st eneen s e s e beseeeteabesaeeneeneeneennans 120

4.3.5.1 Informal Iterative PrOCESSING......cccuerviirieiieiierieeriiete et ete ettt et et e esteesteebeessesssessaesseesseenseenseensenns 120

4.3.5.2 Formal [terative PrOCESSINGccveciieieiieiieriierieesteeteetesteesteeseeseessessaessaesseessesssesssesseesseesseessesssenns 120
Approval, QualityControl and VerifiCatiOnc.cccuerieriieiiieieeieeieneeie e ettt e st et et e ensessaesseenseensesnnenees 120
4.4 Spawning and Merging......ccccueeccerrmrrrriiiiisssssmrrers s sssssssmsee s s ssssssssssmssesssssssssssssnesessssssssssnsnnssnssnssnn 121
4.4.1 Case 1: Standard Spawning and MEIZING........cceeeverierierierieeiieeiereesteeteeeeetestesseeteesessaessaesseeseensesnsenees 122
442 Case 2: Spawning and Merging with Resource COPYINGccceeoverierieniieiieieeiesieeieeie e 124

4.4.2.1 Spawning of Resources with Inter-Resource Linksccccoeouiriiiiiiiiiiiii e 124
443 Case 3: Parallel Spawning and Merging of Partitioned Resourcesccooceevieiieiinienienieneecee e 125
444 Case 4: Nested Spawning and Merging in Reverse SeqUENCe.c.coerereriririeieieierie e 125
44.5 Case 5: Spawning and Merging of Independent JODS...........ccoiuiiiiiiiiiiiiieeee e 126
44.6 Case 6: Simultaneous Spawning and Merging of Multiple NOdescccceriririiriiieiere e 128
4.5 Node and ReSOUICE IDS........cccrmiimremmnssrermmsre s s s s s sss s s ssss s s sssneees 128
L S T = oY o =T T |3 T 128
4.6.1 Classification Of NOtIFICALIONSc..eouiriiirtietieieeiiete ettt sttt ettt et e e s be st ebe e e e eneens 129
4.6.2 EVENE DESCIIPIION ... eetieiieiieiiesiiesteett et ete et e stte bt e e eateeetessaesseesseesseensesseesseesseenseanseansesssenssensaenseensesnsesnnesnes 129
4.6.3 Error Logging in the JDF Fileccccciiiieiiieiieieieeee ettt sttt ettt eennesnneses 129
4.6.4 Error Handling via MesSaging (JIME)........c.cccuorieiieiiieieeiecieseee ettt ettt enaesnnenes 129
L A =Y 8 U 3T 1 ' 129
4.7.1 Resource Status DUING TESIIUMNcccutiiuieiieiietiecteete et st ettt et et e st e bt e e eneeeseesseesneenseeneeeneeeees 130
4.8 Describing Capabilities With JDF ... 131

Page xii

Page xiii

L0 =1 o (=T g T o Yo === LSS 190
200 N o o Yo oY =T 4] o - |- 190
L € T=Y T 1IN o oY o =T - 190
LT B N o) 03) ¢ USSR 190
6.2.2 BUITET ocuiieiciiiceee ettt ettt et b et e b e b st b et se b et ete b e b eseebe et eseete b e st be s enens 191
6.2.3 COMDINEueiviiiieiieiieet et et ettt e et e et e et esteesbe e aeeabeesbeesseeseesseesbeesseessesssesssesseesseasseesseeseesseenseesseessessseseensens 191
I B 1§ < o OSSPSR 192
6.2.5 MaANUAILADOTccvviiviieiiictecteet ettt ettt ettt et e et e e st e etseets e te e beesbeerbeeraesraesre e beenbeenbeenbeesseetaenteereas 192
6.2.60 OFACIING ...uveeviieeieeiie ettt et et e et e et e ste e te e beebeesaeseeessaeseesseesseasseesseassessaesseesseessesssesseessaesseenseassenssenssensannsens 192
0.2.7 PACKINGcciiiieiiieiieit ettt ettt et et e st este e bt et e e st e e ssesbeesseesseesseesbeasa e sa e beerbeeseeeaeeesteseenseenbeesseesaenraenrean 193
6.2.8 QUALIEYCONIIOL....ccuiiiiiieiieciiectieiteteet ettt ettt et e et e e et e s te e beesbeesseessassaesseesseesseessessseassesseenseessenssenssensennsens 193
6.2.9 ReESOUICEDETINITION. .. .cuieiietieiieieeiie ettt ettt et et e e et e e etesstesseeseenseensesssesseesseeseenseensesnsensaensennsens 193
0.2. 10 SPIIE ettt ettt h e st b et b et a bt et e Rt b et e Rt b et e st bt ene b et e st be st e st be s enene 194
LT B B V4 U7 o) SRS 194
6.3 Product Intent Descriptions ..ot ———— 194
6.4 PrepresSs ProCeSSESottt n s 195
6.4.1 ASSELCOIIECTION ...uvieetieiieiiieeie ettt ettt ettt et e et eete e te e beesbeesbeesaessaesseesseesseesseessesseenseesseessessseseenseas 195

Page xiii

6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19
6.4.20
6.4.21
6.4.22
6.4.23
6.4.24
6.4.25
6.4.26
6.4.27
6.4.28
6.4.29
6.5
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.6.13
6.6.14
6.6.15
6.6.16
6.6.17
6.6.18
6.6.19
6.6.20
6.6.21
6.6.22
6.6.23

Page xiv

COIOTCOITEOTION. ...ttt ettt et b e bt bt eb e st e s et et e bt sb e eb e e bt e bt e st et e b e st e etebeseeeb e e bt eneeneentenee 196
COlOrSPACECONVEISIONeevvieereetiereeteeteetesetesteesseesseesseesseassasseesseessesssesssesssesseesseessesssssssesssessesssesssessenssens 196
(07070 To7 i 0]) 2 1 =TSP 197
CONtONECAITDIATIONcuveiiiiiteetieit ettt ettt ettt et et et be et beebe bt est et et saeebeebeebe et ensenee 197
DBDOCTEMPIALELAYOULeeuvieeeieiieeiiesiiesieeie et ste st ei ettt e et e steeste e e ssessaesseesseenseensesseesseaseenseensesssesseenses 198
DBTEMPIAtEIMEIZINGeevieniieeieiieeiie ittt ettt ettt et et et st e et e e st e e st eteeaeesseessee st e st eneeeneeeseenseenseeneenseensenn 198
S 0 o) T (T O] 0 4 1 TP 198
FOIMAtCONVEISIONueeiiieiii ettt ettt et ettt e et e bt e bt et e e e s seesseese e e bt eaeeeneeeneenseeneeenseeneenseannean 199
TMAGEREPIACEIMENL ...ttt ettt ettt et es et e et et e e bt s et ebeeseeneeneanse b e eaeebeeseeneeneensenes 199
TINAGESEENE ... ettt ettt h e b e b et e et e s b e s bt e st e et et e s he e bt et e en b eateebeenbeenbean 200
TINPOSIEION 1.etieitieeiiieeiee ettt ettt ettt e et e e sttt e s ate e bte e see e tbe e seeensaeenseeensseenseesnsaeanseesnsseenseeansaeanseesnsaennseens 200
INKZONECALICULALION ...ttt ettt ettt b e s bt e bt e st et e e e be st e saeebeebeebe et entenee 201
IIE@IPICEIIE ettt ettt ettt et e et e st e s te e bt esbeesteeseesseesseesseasseessesssessaenseessesssesseesseenseensenssenssenseensens 202
LayoutElementPrOQUCLION.......cc.iiieeieciieiieie ettt ettt et e et e et e s e s e eneeenseeseensaensenn 202
LayOUtPIEPATAtIONeeiiiiieiieieeie ettt ettt e et e st e st e et eenbessaesseesseeseenseenseeseenseenseenseensenseensenn 203
PDEFTOPSCONVETSION ...ttt sttt ettt sttt ettt et ettt st s b e bt et et e b e st saeebeebeebe et enaenee 203
oG D 4oL PRSPPSO 204
| A 1ol € [53 1 13 110 o PRSP SRS 205
PLOOTINE ...ttt ettt ettt et e b et et et e e a e e e st e ea e e bt e et ene e ae e bt e et enteeneenneennean 207
PSTOPDFCONVEISION ...ttt ettt ettt ettt ettt et ee e s b e sb e e bt e et e maesatesbeenbee bt entesatesneenbeenbean 208
RENAETINE ...ttt ettt etttk s h e bt e bt e et e st ene et e b e te e bt eeeebeemeensensensebesaeebeeseeneeneensenes 208
RIPPING ..ttt ettt h et e bt et ee e e bt e e bt e bt e bt et e e et e sbee bt et e en bt enteebeenbeenbean 209
SCANMINGeeveitieitietiesie et et e et e et e st ebeesteesteeteesseesaesseessesssesssesseeseesseesseasseassenssesseassassseesseansesssesseesseensenssenss 209
SCIEEIINGveeutieeieieieetteeteete ettt etteettesteesbeesbeessesssessaesseesseanseasseesseassesseesseesseessesssesssessaesseensesssesssesseesseensenssenns 210
SEPATALION.vevveseieitieste et et et e et eette bt esbeesbeeebesetesteesseesseassessseeseesseenseesseesse et seassenseensaenseenbeenaesreeereenseenreenseans 210
SOTEPTOOTING ..ottt sttt ettt e et e s st et e esteenseesseesaessee s eenseenseennesnnesseenseenseenseans 210
THLIILE e ettt ettt ettt e et e st e s st e s st e seenseesteesee st en st enseen s e e atees e e st e s e enbeeateenee st enseenteenseentenseenren 211
1121070 1T USSR 212
PrESS PrOCESSES. .. uuiiiiiieirr ittt E e 212
(01035175 11 Te) 11 5 01510 213
DIGIAIPTINEINE ...ttt ettt ettt e et et e et et ea e eseees e e st e eeemteemeeseeesseenseenseeneeeneenseennean 214
IDPIINEIIIE ..ottt ettt ettt e a e e bt eb et e st ea e ebteeb e e bt e bt e mt e s et e shee bt et e enteeateebeenbeenrean 216
POSEPIESS PrOCESSES ... ittt mn e mn e e e e e e e e nnnnmnnns 217
AdNESIVEBINAINGc.veiiiiiieiicieetieeete ettt et ettt e ste et e esbeessessaesseesseesseessesseesseeseenseessenssesssenseensens 217
BIOCKPIEPATATION ... eetieiieiieiieeiieette st eie et e ete st e st e bt et e esbeeteesseesseesseessassaessaesseesseassesseesseesseensenssesssensennsens 217
BOXPACKINGeveiiiiiieiieie ettt et e sttt e be et e e st e e st e ssaesseesseesseassassaessaesseenseenseeseenseenseenbeesseessenraenres 217
(071111 1 < 1TSS PRSP SPSR 218
L0311 =4 USRS 218
CRANNEIBINGING. ... cevieiiieieeieeieeeee ettt et e st et et et e e st e ssee s st enseesseensesssesseesseenseenseenseansenssenseensenn 219
(070311231516 172 VPRSP 219
(07011 T =PRSS 219
(0101 V2N 075 V(o7 150 s PRSP 220
CTRASIIIZ .ttt ettt ettt ettt et et et e h e sa e e s bt e bt eat e eh e e eh e e bt et e em bt emteeatesb e e bt e bt eateebee bt et e enteenteebeenbeenrean 220
(311351373 OSSR TR PRSP 221
DIEVIAINE,. ettt ettt ettt et h st e et et e e e b e e et ebeea e es e emeem s e b ek e e bt eeeebeeneenten s et e teeaeebeeneeneeneentenes 221
ENIDOSSINE ...evvevieiieie ettt ettt e et e st este e bt esbeesbeeteeeseesseesseasseesbesssessa e seenbeenteesaeseenseenbeesbeessenreenres 221
ENASREEIGIUINGviviiiieiieiieieete ettt ettt st ettt et e e st e esbesse e teesseesbessaesseesseesseesseesseessenseensenssesssenseensens 222
FOLAINE ..ttt ettt e e e b e s teeete e s e esseesseesseasbesseeseesseenseessesseesseenseenseesseeseenreenren 222
GALHETIIE .. ettt et e et e st e st et e e bt e st e ese et e ensee st e anseasseasae s e enseensesasesseeseenseenseenseensenseensenn 223
GIUINE. ...ttt e e et e skt e st e s e easeeatesseenseenseeaseasseasae s e enseenseensesaeesseanseenseenseansesssenseensenn 223
HeadBandAPPLICATIONccveriieiieiieie e sie sttt ete et et e et et e et e estessaesseeseeseensesasesseesseanseensennsenssenseensens 223
3 10) (S0 1.1 TSRS 224
53 T1<) 450U 224
JACKELIIE ...ttt ettt ekttt e e bt e et et et et e be et e ebeeae e st e s e en s et e s et e beeaeebeeneeneeneentenes 225
| 21 o Tc] 112 TS OO OO TPRTRR PR 225
LAMUINATINE ..eonteiieitieieee ettt ettt ettt e a e s b e b et ea e ee e eh e e eb e e bt e bt et e e et e she e bt et e en bt enteebeenbeenrean 225

Page xiv

Page xv

6.6.24 LongitudinalRIDDONOPETAIONScvvevieiieeiieiieeieertteteeteetesteesteeteesesaesseesseesseessessseessesseesseessenssesssesseenses 226
6.60.25 INUMDEIINE. ... coiuiiiieiieiieetieettetteteeteetesteesteesteeseestesseesseesseesseasseassaassessaessaessesssesssessseseesseenseessenssenssensensses 226
LI T o1 1 T V72 1 =TSRSS 226
6.6.27 PAGELISt...cciiiieiiee ettt nnean Error! Bookmark not defined.
0.0.28 PeIfOTAINE ... eeouieiieiieiieie ettt ettt et e st e s te e bt e st e e st e s st e st es s e enseessessaesseeseenseenseenseestanseanseansennsensaeseensenn 228
6.6.29 PlastiCCOMDBBINAING.ccuieitieiieiieie ettt ettt ettt et e et e e st e s st e s bt eeeeeesaeeeneeeseesseenseenseeneenseennean 228
6.6.30 RINGBINAINGcuviiniieiiieiieeeee ettt ettt ettt et et e et e bt et e e teeaeesseesaeesseente e et enteenteeneenseenean 228
6.6.31 SAAAIESHIECRING.c.eiiiiiiei ettt ettt ettt et e et e aeeteese et e e st entens e senseeseeseeseeneeneeneensenes 229
6.0.32 SNAPECULLINGeneeteeteete ettt sttt ettt ettt e e et e te et e ebe e st eaeeaeen s e s e s e beeaeebeeseeseemeensenseasenseaseeeeabeeneeneeneeneenes 229
6.0.33 SHIINKING ...ttt ettt et a et e et e te bt et e eh e e st es e eaten b e e e et e ebeeeeebeeneens et e teebeeaeebeeneeneeneeneenes 229
0.0.34 SIACSEWING. ...ttt ettt sttt a et et et e et e e te e heeh e e st es e em e e e e teeae ek e ebeeb e eseenten s et et e ebeeeeebeeneeneeneeneenes 230
6.6.35 SPINEPIEPATALIONvviviivieiietietieteette st et ete e e e testeesteesbeesseesbeesseessessaessaessesssesssesseeseesseenseesseessesssensensens 230
6.6.30 SPINETAPING ...eoviiniiieiieiieeiiectieteete ettt e st e st e ste e bt estestteeseesseesseesseessesssessseseesseesseassesssesssesseenseessenssenssensennsens 230
LT I AN T« 'Y TSRS 230
0.0.38 SHIECRIINE ..eueiuietitiiti ettt ettt b bbbt et et b e bbbt ettt et b e et b e bt bt et enee 231
LT L A5 o) 1 =TSSR 231
6.6.40 SHEPBINAINGcneeeniieieee ettt ettt ettt ettt b bt et et e et et e eaee bt e nte e bt e teenteeneenneenean 231
6.6.41 TRIEAASEALING.cotiitieieee ettt ettt et e et et e e e ss e e ebeenae e et eneeentente e st enteenteeneenseenean 232
6.6.42 TRICAASEWINE. ... eeneieiietteeie et ettt ettt ettt et e st e et e et e et e et e esteeaeesseeaseenee e et smeeeseesseeseenseenseeneenseannean 232
0.0.43 TIIMMIIE . c..eeteenteente ettt ettt h et e bt et et e sateeb e e b e et e en bt ea e e es b e abee bt e bt emeeemeesaeeebee bt e et enteesteebeenbeennean 232
6.6.44 WIr€COMDBINAINGeoviitieiieiieiieiee ettt ettt s et et et e e et e e bt bt ese e st ens et e besbeseeebeeseeneeneeneenes 233
0.0.45 WIADPINE ...ttt ettt ettt h et e bttt et s at e s bt e bt et e ea bt ea e e eb e e bt e bt e bt e et s heesheeeb e e bt et e en bt eateebeenbeennean 233
6.6.46 POSEPTESS PrOCESSES SEIUCTUTE. .. .eeiuiieiiiieriieeiiieste ettt et ettt e rteetteerttesbeeebeeesbeesseessseessseesaseesnseessseesnseesnseens 234
6.6.46.1 BIOCK PrOQUCTION ...ttt ettt sttt ettt neas 234
6.6.40.1.1 BlOCK COMPIIING...ccviiiiieieriieiieiieieeieettesteete et e see st steesaeesaessaeessessaesseesseessesssessaesseeseessesssenses 234
6.6.40.1.2 BIOCK JOININGeouviiiieieieiieieeit et ette et ee et eseesee et e esteesaesseeeseanseenseenseensesssenseenseensennsesnnennes 234
6.6.46.1.2.1 Single-Leaf Binding MethOdsc.ocveiuiriiiiieiieiieseee e 234
6.6.46.1.2.1.1 Loose-Leaf Binding Methodc..ccerirriiiiiieiiieieeieeeece e 234
6.6.46.1.2.1.2 Mechanical Binding Methodsccooieiiiriieiinienieeee e 234

6.6.40.2 HOIEMAKINGooeiiiiieiieiieie ettt ettt ettt ettt et e et esae e et et e e st e e st e s e e teete e teeneeeneeens 235
6.6.46.3 LamMINATINE ..ottt ettt ettt e et e ettt e e s e e bt e bt et e et e et e eneeeae et e e teenteeneeeneennean 235
6.6.46.4 INUIMDETINGueeniiieitietiete ettt ettt ettt et e st et e tesbeeteebeesteaeen s e seaseeseebeeaeeseeneensenseaseasesaeeneeneansenes 235
6.6.46.5 PaCKAZING PrOCESSEScuvieiitietiiiieiieiee ettt ettt a e ee ettt et e be st e sbe e bt eaeese et eneeeenean 235
6.6.46.6 Processes in Hardcover Book Production............cceceeceieriiiiinininiiciieeeieee e 236
6.6.46.7 SREET PIOCESSES ...ttt sttt bbbt ettt b e s bbbt et et e st et e s bt sbe e bt eaeeaee e eneen 236
6.6.46.8 TIP-OM/IM c.eeitieiie ettt ettt ettt et e et e e teeebe e teesbeesseessessaeseesseesseessesseesseeseesseassenssenssenseansens 236
6.6.40.9 TIIMIMING ...ocuvieiieiieiieeiesieerte e et e eteeetes et et ebeesaesseessaesseenseenseenseessesseeseenseenseensesssesssesseensesnsesnsenses 236
6.6.46.10 WED PIOCESSES . ..euveviteriiiiieiteiteterteete sttt ettt ettt sttt et ettt sttt sttt e et e b e st b sbeeue et ennenee 236
Chapter 7 RESOUICEScccceririiiiiiicsssmerreesrsssssssssmeseesesssssssssmssseeesssssssssnssssesessasssssnnsnsssessessssssnnnnsensssssan 238
INTENE RESOUICESeiiiieiiii i e n e s an e e e s e 238

Intent Resource Span SUDEICMENLScc.eeiiiiiiiieiiec ettt e nee e eeeas 239

7.1.1.1 Structure of Abstract Span SUDEIEMENTceriiiiiiieie e e 239
7.1.1.2 Structure of the DurationSpan SUDEIEMENL...........ccceevvieiiiiiiieiieieeeee e 240
7.1.1.3 Structure of the EnumerationSpan Subelementc..ccoevieiieiieiiieiicieseeceee e 240
7.1.1.4 Structure of the IntegerSpan Subelement.............ccooieiiiiiiiieiee e 241
7.1.1.5 Structure of the LabColorSpan SUbElement.ccveeviieiiiiirieriieiieeeieeeseeie e e e 241
7.1.1.6 Structure of the NameSpan Subelementccoovverieriiiiiieieiiesieeee et eee 241
7.1.1.6.1 Specifying New Values in a NameSpan Subelement............cccoecueeierienieniiecienienieneeseeee e 241

7.1.1.7 Structure of the NumberSpan Subelement............ccvevverieiierierieeeeeeeeee e 242
7.1.1.8 Structure of the OptionSpan SUbEIEMENL............cevierierieiieieeeeeee e e 242
7.1.1.9 Structure of the ShapeSpan SUDCIEMENLc.ccceerieriieiiiiieeiereee e 242
7.1.1.10 Structure of the StringSpan SUbElemMeNtcccoeiiiiiiiiiieeeeee e 242
7.1.1.11 Structure of the TimeSpan Subelementcoccoeiiiiiiiieieeeee e 242
7.1.1.12 Structure of the XYPairSpan Subelement............cccovvevviiiiieiieiiciecieieee e 243

Page xv

7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13
7.1.14
7.1.15
7.1.16
7.1.17
7.1.18
7.2
7.2.1
722
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
729
7.2.10
7.2.11
7.2.12
7.2.13
7.2.14
7.2.15
7.2.16
7.2.17
7.2.18
7.2.19
7.2.20
7.2.21
7.2.22
7.2.23
7.2.24
7.2.25
7.2.26
7.2.27
7.2.28
7.2.29
7.2.30
7.2.31
7.2.32
7.2.33
7.2.34
7.2.35
7.2.36
7.2.37
7.2.38

Page xvi

ATEDEIIVETYINTENL ...ecvviiiiiiiiiciieeiiceteei ettt et et e st e st e b e e st eteesseesseesseesseessessaesaeesseesseesseensenssesssensennsens 243
BINAINGINTENT.......iiviiiiieciieieetee ettt et ettt e te et e e s e esbessaessaesseesbeenseesaesseenseenseesbeessensaenrens 247
COLOTIIERIE ...ttt b ettt et et et b e bt b e e bt ea e et et et e se e bt s bt eue et ennenee 258
DIEIIVEIYINEENL. ... cetieeieie ettt ettt ettt et ettt e e st e st e st eneeensessaessaesseenseenseensesseeseanseensennsenssensennsenn 260
EMDOSSINEINIENLcuieiieiieiieiieeieie ettt ettt et et et e sstessae s eesseensesnsesneesseeseenseenseansesnsenseensenn 265
S0 11T £ 173 o | PRSP 267
3 10) (S0 1 QT T4 U 133 PP 267
INSEIEINGINEENT ..ottt ettt et e bt et e e e st e s bt e s bt e eeeneeemeeeaee st enseenteeneeeneenseennean 269
Laminatin@INTENTcc.eeiuiiiiiieeie ettt ettt e b e b et ettt s h e s b e bt et e a e e it et et sate e bt enbeenbean 270
LaYOULIIECIT ...t ettt b et et e et e s bt e s b e e bt e bt e st e saee s bt e bt enteeateebeenbeenbean 270
IMEATAIMERIIE ...ttt et e a e b et e e e e e e et e sb e e s b e et e et e e et e sheenbe e bt enteenteebeenbeenbean 273
INUMDEIINEINTENLeovvieiiiiiieiieieeeeie ettt ettt e et e et esteesseesbeessesssesseessaesseessesssesseesseenseensenssesssensennsens 279
PaCKINGINLENT.......iiiieiiiiieiicec ettt ettt eta e e et e te e seesbeesaessaesseesseesseessesseenseensesssesssenseensens 280
ProdUCHIONINEENEc.eiiiiiiiitiitieit ettt sttt sb ettt ettt et ebe e bt enee 281
PrOOTINGINLENT.eoeeieiieiieiieeee ettt et et e et e st e et e et e e b e saaesseesseenseenseessenseenseensesnsenssenseensenn 282
ShapECULHINZINEENL.......eeiieiieieeierieeet ettt e et e et e st e s st e st esteenseessessaesseenseensesnsesnsesssesseenseenseensenns 283
3153 11 1<) 1L SRS SRPSRTSTRPt 284
ProCess RESOUICES......ccccuiiiieiiriiirs s s s e e an e am e e s amn e e nnn e 285
Process ReSOUICE TEMPIALE.........ccueiruieiiieieeie ettt ettt sttt et et e et e st et e e e enteeneesseenneas 285
AAATESS ...ttt ettt ettt h e bt h e e a e e et et e te e ekt e hees e e st en s et et e te bt eae bt e st ene et entenes 286
AdhesiVeBINAINGPATAIMScouiiuiiiiieieee ettt ettt ee et e e st e s et et et e saeebe e st eneeneensenes 286
APPIOVAIPATAINSo.viiiiiiieitieit ettt ettt steebe et e e st e ete e beesbeesseessesssesseesseesseensesssesssesseensesssesssesseessens 287
A DDTOVAISUCCESSvevvevieiieiieetieteettesteesteeteesaesetesseesseesseesseassaassesseesseassesssesssesseesseesseassesssenseessenssesssensenssens 288
ASSECOIIECTIONPATAINS.c..eeuieiieieiesie sttt ettt ettt st b et b e bt et e et et e st saeebeebeebe et entenee 289
AUtomMAatedOVETPIINTPATAINSccveitieiieiieie ettt ettt et e et e et e sbestaesseesseessesssesseesseesseensesssesssesseeses 289
BlockPreparationParamiscceeeiieiiieieeiesiesieerie ettt ettt ettt e b e e aesse e st e seenteenteenaenreenrean 290
BOXPACKINGPATAIMS........c..eeiieiiieiieeiieiieieete ettt ettt et et et e et eesaessaesseeseensesneesseesseanseenseensesssenseensenn 290
BUTTETPATAIMS. ...ttt ettt st b ettt et ae et aee 291
2303316 | PP 291
2 ALY 1 o PRSP 293
CaseMaKiNGPAramIScoiiiiiiei ettt ettt ettt ettt et eea ettt et e eneenreennean 294
CaSINGINPATAIMSeeuiieiii ettt et et ee e s bt e s b e s bt e bt e bt st esaeesbe e bt enteeateebeenbeenbean 296
ChannelBindiNGParamsco.eeiiieiiiee ettt ettt e ettt s e e et e e st e st e st e s et e aaeebe e st eneeneeneenes 297
CIELABMEASUIINEZEICIAoiviiiieiieiieiectestee ettt ettt et e et e s sae e e sseesseesseenseesseessenseensens 298
COIBINAINZPATAMS ...ttt ere ettt e ste et e e b e esbessaessaesseesseessesssesseesseenseessenssenssenseenses 299
COIIECHNGPATAIMNSvieiiiieiiieieiiecit ettt et et eteebestesttesteesseesseesseessesssessaessaesseessesssesssesseenseessenssesssensenssens 300
C000T . ettt b bbbt h e et h bbbt b e st ea et et et st bt bt eae et entenee 301
COlOTANTCONIIO . c.. ettt b et ettt b bbbt b e e st et e b e st et et e sa e bt ebeebe et entenee 305
(0701 Lo} 703 115 0]] ' o USSR 308
[070) (o) {03 4 (T 1 (070 a2 314 TSRS 309
ColorMeasuremMeNtCONAITIONS.eueeieeieetieit ettt et et et et e et e st esbe e bt eteeteemeesseesseeseeneeenseeneenseensenn 311
(0701 (a3 d oo o) APPSR 313
ColorSpaceCONVErSIONPATAINScceciiiiiieeiiecieeeiee st et ste et e steesateestbeesaeeessbeeseeessaeenseesnseeenseesnsaeenseess 313
COMORNANNEL ... ettt sttt et a st e et e st e et e e bt e bt eseeneease s e seabeeaeebeeseeneeneensenes 323
(07035310121 1) OO OO TRPRTRR PR UPRO 324
(0701010103115, 1 L APPSR 325
COMTACE ..ttt ettt b bt et e at e s bt bt e bt et e et s a b e s be e bt et e e st e e bt e s bt e sbee bt embeennesbbesbeenbeenbean 328
CONLACTCOPYPATAIMSeeivieiiieeiteeeieeete ettt ettt ettt e st e e beeebte e bt eeseeessbeenseesnbaeenseesnsaeenseesnsaesnseess 328
ConventionalPrintingParamSc.ccveiieiieie ettt s tesae e e eeeseeteeseessee s eenteensesnsensaensens 329
COSECRILET ...ttt ettt et st st a et et et e s ae e b e bt e e et e s aeesae e bee bt emneenneeanesunenbeennens 332
CoVErApPliCAtIONPATAMS.cc.eiriieiieiieiecie ettt et et e st e st e e st et e e aesneesseesseenseenseensesssenseensenn 332
(5 (1 Ted o2 ' PP SS 333
CULBLOCK ..ttt ettt etk te et e e st e st e st ess e s ensees e et e eseesteseensensensenseseeseeseeneanseneansenes 334
CUEMAATK ..ottt ettt et et et e et e e bt e st e s e e e em s e eb et e e bt eeeebeemeensensensebeeaeebeeseeneeneentenes 335
CULINZPATAIIIS ...ttt ettt et a e b e b et et e et e sb e e s bt et e e bt e st e saeesbe et e emteentesbeenbeenbean 336
DBMEIZEPATAIMSceeitieiieiiieiieeie ettt ettt sttt ettt eb e e bt e b e e bt et e saee s bt e sb e e bt e bt saeeeae et e enteeateebeenbeenbean 338

Page xvi

Page xvii

7.2.39 DBRUIES ...ttt b e a ettt bbbt a e sttt b e eh e bbbt enee 338
72,40 DBSCREMA. ...ttt h ettt ettt b e bt bt bt a e s et et b e et b e bt bttt enee 338
7241 DBSEIECLION ...ttt ettt ettt b et b ettt et b bbbt bt et et be et b e bt ea et enee 339
7242 DEIVEIYPATAMSeouiieieiieiieiteie ettt ettt ettt et e e et e e et e esaessaess e e seenseensessseesaanseenseensennsenssenseensenn 339
7.2.43 DensityMeasurinNGFICldcciiiiiiiiiice ettt ettt ettt raenreenean 340
Y B e 1a) o 14T ed o 1 SRS 341
5 T B T3 4 1o TSRS 342
7.2.46 DigitalPrintin@Paramscocuieiiiriiiieiieeee ettt ettt ettt ettt ettt a e ae e et enteenteeneenneenean 344

7.2.46.1 Coordinate systems in DigitalPTintingccceceeieiieieriieie ettt 344
7247 DISJOINMEINEeeueenietieteete ettt et et et e teete st e et e eaees e eae e e eaeeeseebe e bt ebeeseeseemsemsanseaeeebeeseeseeseeneensansanseseseeeseeseeneeneaneenes 347
7.2.48 DIVIAINZPATAINScueitiitiiet ettt ettt et a st e st et e e e eeete e bt eaeebeeneens e s e s e abeseeebeeneeneeneeneenes 348
7.2.49 ElementColorParams.ccuiiiiiriiriieniietietet ettt ettt st b et b ettt st be bbbt eae et nee 348
7.2.50 EMDOSSINEPATAINSveevieiiieiieitieitieieetesteste st esteeteesteeteesteeseesseessesssessaesseesseesseassesssessaesseenseessenssesssensennses 350
T B 251112 [0) <SSO 351
7.2.52 EndSheetGIUiNGParams............ccocoieiieiiieiieie ettt ettt et saeseesaeeseesseensesseesseenseensessaenseesens 351
7.2.53 EXPOSEAMEAIA.cuiriiiiriiitiiitcitee ettt ettt bbbt ettt a e et b et ea et nee 352
TASE BESPOC.. o 353
7255 FIPOLICY w.eeuteteiee ettt ettt et et et te et e st e st e st e st e s s e s e s e beeae et e ene e st e st en s e b et et ese st eseeneenteneenaenes 356
A2 T 3o U« A TSRS 357
7.2.57 FOIAINGPATAMS. ...ttt ettt ettt a et e et e e e e et e e b e eae et e eneens e s e beebeseeebeeneeneeneeneenes 358
T.2.58 FONEPATAIMScouiiiiiiieiiieiieet ettt et ettt e b e s bt e bt e bt e et e st e satesb e e bt et e en bt esteebeenbeennean 362
7.2.59 FONEPOLICY -.neitiieitt ettt ettt ettt s et e bt bt eb e e st en et e e e beeae ekt esees e emtemeenseasenseaeeeeeebeeseeneeneensenes 362
7.2.60 FormatConVerSIONPATAINSc.ceouiriiriirtiiteitt ettt ettt ettt besb e et e bt e st et et e b e see et e e st eneeneeneenee 363
7.2.61 GathErINPATAINScvieiieiiieiieetiectieie et eteste sttt ettt et eete e beesbeesbeesbessaesseeseesseessesssesssesseesseessenssesssenseensens 364
7.2.62 GIUCAPPIICALIONeevvieeiieeiietietieieeteete st e st esteesteesteetteeseesse e seesseesseessesssesaesseesseassesssesssesseenseessenssenssensenses 364
7.2.63 GIUINGPATAMSeoviieiiieiiieiieeiieeee ettt ettt et e st et e et e st e esteessesseeseenseensesssesseesseenseanseanseansensaenseensenn 365
72004 GIUELANE.coueiiiiiieiiiiiteste ettt bbbt ettt s et b e s bt bt e et et et et et e b e se e b s bt eae et enn e 366
7.2.65 HeadBandApplicatioNParams.............ccueiieiiieriieiieiieeieeceit ettt ettt te s e s eesaeesseenseenseesaesnsessaenseenens 367
2T [(USRS 368
0 A 5 o) (<) 15131 TSRS 368
7.2.68 HOIeMaKINGPATAMIScoouiiiieiieiiee ettt ettt e bt e et et e et et ese e saeesteenteenseeneenseennean 370
7.2.69 RegisterMarkQualityControIPAraimscceieriirieiirieete ettt ne e nes 372
7.2.70 QualityControlRESUILccoviiiiiiiiieee e Error! Bookmark not defined.
L.1.1 0 REEISEEIMArK....c.ioiieiiiciieiieiieieee ettt ese e nneas Error! Bookmark not defined.
7271 IdentificatiONFIELAcc.oiuiiiiiiiiiiiee ettt ettt b et b et 374
7.2.72 IDPIINTINEPATAINSvieuvieeiieiieetiesiieieeteeteste st esteebeesbeessesseeseesseesseessesssesseesseesseassesssesssesseenseessenssenssensensses 375
7.2.73 ImMageCoOMPIESSIONPATAINScecuierieeiterieiieseerieeteeteeeteesee et esteeteessessaessaesseenseensesssesseesseenseansennsesssenseenses 386
7.2.74 ImageReplacemMEntPAramScceecuiiiiiiieiiecieit ettt sttt et nte et e enaenseenean 388
7275 IMAGESEEIPATAIMISceiutiiiiiieiiiie ettt ettt et s b e st e st e s bt e s bt e sabee s bt e sabeesabeesabeesnbeesaseens 389
00 L T 11 USRS 391
7.2.77 InkZoneCalculationParamsccoeouiiiiiiiiiee ettt ettt et ettt ettt ne e e nean 392
7.2.78 INKZONEPTOTIIE ...ttt ettt ettt et et et e s st e saeesee e st e teenteeneeeneenseennean 392
72,79 INSEIINEPATAIIIS ..ccutieutieiiieiieet ettt ettt h ettt et e et s bt e s bt e bt e bt e st e satesbeenbe et e enbeeetesbeenbeennean 393
T.2.80 INSEIESIEELeetiiiiiiieiet ettt ettt ettt e e e e b e e b e bt et e et s et e s bt e sbe e bt e bt et e en bt enteebeenbeennean 394
7.2.81 INterpret@dPDLDALAccvieuiiieieitieieeie ettt ettt ettt te et ebe et e e b e eaaesbaesreeaeesbeeraeeraeeteesbeenbeerseersenteenreas 397
7.2.82 INtEIPIEUINGPATAINSeevieiiieiieitieitieieete e eteetee st e bt et e estestaesteesbeesseessessaesseesseesseesseasseessesssesseessenssesssensenses 397
7.2.83 JACKEUNZPATAMSoioviiiiitieiieieeie ettt ettt et e et e e e e sbeesbessaesseesseesseessessaesseesseesseesseassenssenseensens 400
7284 JODFIEIA ..ottt bbbt h e a et b e bbbt bttt b e bbbt bttt nee 401
7.2.85 LabDCINEPAIAIMSeciieiiiiietieiieie ettt ettt st e st e st e bt esteesaeesaeeseenseenseensesssesseesseeseenseenseenseensensaenseensenn 402
7.2.86 LaminatiN@ParamS.ccoeeieriieiiieiieiesiesteste sttt et et e te et e e e te e b e s aaessee st e st enseenteenteeseenseenseenseenaenseennean 403
T.2.87 LAYOUL .ttt ettt ettt et e e et et e et e e bt e bt e e bt e e be e e bt e e bt e e bt e e bt e eateesabeeeabeesabeeeanee s 404
7.2.88 LaYOULEICINIENL ..ottt ettt ettt et et e e e st e e st e s b e e et e ee e et eaeeeseeeseeteenteenseeneenseennean 405
LayoutPreparationParamisc.ooiiiiiiiieie ettt et ettt ne e b e b e e ne e teenteeneeeee 408
7.2.90 LongitudinalRibbonOperationParammsccueruiieriiriieieietieieee ettt sbe e b e enee e e nes 417
7.2.91 ManuUalLabOTPATAINSc.couiiiiiiiiiiie ettt ettt ettt et et be s ettt e st ese et e e e b e sbeebesaeeseebeeneeneeneeneenes 418
7292 IMIEAIA. ...ttt ettt ettt ettt he ekt bt eR e Rt et en b e ae ekt eh ekt eheene e st et et e ebeeteebeeneeneeneeneenes 419

Page xvii

7.2.93

7.2.94

7.2.95

7.2.96

7.2.97

7.2.98

7.2.99

7.2.100
7.2.101
7.2.102
7.2.103
7.2.104
7.2.105
7.2.106
7.2.107
7.2.108
7.2.109
7.2.110
7.2.111
7.2.112
7.2.113
7.2.114
7.2.115
7.2.116
7.2.117
7.2.118
7.2.119
7.2.120
7.2.121
7.2.122
7.2.123
7.2.124
7.2.125
7.2.126
7.2.127
7.2.128
7.2.129
7.2.130
7.2.131
7.2.132
7.2.133
7.2.134
7.2.135
7.2.136
7.2.137
7.2.138
7.2.139
7.2.140
7.2.141
7.2.142
7.2.143
7.2.144
7.2.145
7.2.146
7.2.147
7.2.148

Page xviii

IMIEAIASOUICTEeuentetete ettt ettt ettt b e bt eb e bt e s et e b e e s bt eb e bt e bt e st em e et e b et et e saeebeebeebeeneentenee 424
INUMDEIINZPATAINSeevvieiiieiieeiieeieeie ettt et e st e steeteebeetteeteesteesteesseessesssessaessaesseesseessesseesssaseensenssesssessensses 424
[00) 15114 3 L0103 USSR 425
OFAEIINGPATAIMNS ... eevieiii ettt te st e st et ettt e e st e st e et e e teensesasesseesseesseenseensesseesseanseenseansennsenseensenn 425
PaCKINGPATAIMSooviiiieiicieceee ettt ettt et et e et e e s e s saessaesseeseenseensesseesseenseenseanseensenseensenn 426
o LS I] PRSP 427
PalletiZINGPATAINSeeiiieiie ettt ettt ettt et et et e e et e s bt e bt et e e ae et e e ae e ae et e e et enteeneenreennean 430
o2 1 (<] PR URUSPSR 430
PDFTOPSCONVEISIONPATAIMNS. . ..cetientieiiieiieeiieit ettt ettt et sb e e ettt sbee bt e bt enteeatesaeenbeenbean 431
PDLRESOUICEALIAS ...ttt ettt ettt ettt e e e eb e s bt e bt e b e et e satesbeenbe e bt emteeateebeenbeenbean 434
Perforatin@Paramscoouiiiiiiiee e ettt et ettt et st bee b e as 434
POISOM ...ttt ettt ettt ettt ettt b e b ettt st beenbe e s 435
PlacEHOIAETRESOUICEcviiieiieiiieiieeteeie ettt et b ettt et bt bt et b e e bt eae et naenee 436
PlasticCOmMbBINAINZPAIAMScc.eeoiieiieieeie ettt ettt ettt e e tesaeseaesseessee st ensesseesseasseenseenseessenseensens 436
PIat@COPYPATAIMNScuvieiiieiiieiieiieieete ettt ettt et e st et e eabesnsessaessaesseenseensesnsesseesseanseensennsenssensennsenn 437
PrefligRtANALYSIS ... eevieeii ettt sttt ettt e et e et e et e b e en e e nteenaeenee st e st e st enreenteenaenreenren 437
PreflightINVENTOTY ...c..eeiieii ettt ettt ettt et e e e et e s st e s bt e st enbeemeeeneeese e st eneeeneeeneenseennean 439
PreflightPrOTILE ...ttt ettt et s ettt ettt st eea ettt enteeneenreennean 440
o0 G374 1) PSR 441
PreviewGenerationParamsc.coouiiiiiiiiieieeee et e ettt ettt be e an 442
ProOfIN@ParamScouiiiiiii ettt ettt ettt st bee b e an 443
PSTOPDFCONVEISIONPATAIMS. . ..ottt ettt sb ettt st s e bt ettt eateeaeenbeenbeas 445
QUALILYCONTIOIPATAIMNSeiviiiieiieieete e te st et et eete st e ste e bt esbeessesssesseesseesseessesssesseesseesseenseensenssesssesseesses 450
QUALILYCONLIOIRESUILocveieiiiieiieieei ettt ettt ettt e e e teestaesbe e beesbessaesseesseesseesseensenssesssenseensens 450
REGISIEIIMATK ... oottt ettt et e et e e b e e tbeste e beesseessessaessaesseesseenseensensseessensaensens 451
g 13 8 L) oo o BTSSR 452
RENAEIINGPATAINSc.vieiiieiiieiieiieee ettt ettt ettt e st et et e estessaessee s eenseensesneesseenseenseensesnsesssenseensenn 453
ResourceDefINItIONPATAIMScc.eiiiiiiriiiieet ettt ettt s b et nee 454
<3 12 o) PRSP 455
Rin@BINAINGPATAMSoouiiiiiiiiiiiei ettt ettt et e bt et e ettt sae e s st e et et e enteeneenneennean 456
RUNLISE 1.ttt ettt ettt s a e et e et e e m et e aeees e e es e e st emseemeesmeesaeeseeesseenseeneeenseeneenseennean 457
SaddlEeSHIChINGPATAINSc.eiitieiiite ettt sttt ettt e s te et e beeae e st e s e beseeebeeneeneeneenean 463
SCANPATAIIS ...ttt ettt h e a e st et e et eat e e bt e bt e bt en b e eabeesbesatesbtesbeenbeenbeenteens 464
SCAVENZETATEAeeeueeeeniiieiieeite ettt ettt ettt et e ettt ettt e stte ettt e bteette e steensaeesbeensteesseesseeasseenseesnseeenseesnseesnseesnns 465
SCIEENINZPATAIMSccveiiiietieiieieeteettesteete e et e ste st e st e bt esbeesseeseeeseesseesseesseessesssessaesseesseassesssesseesseenseessenns 466
SeparatioNCONIIOIPATAINSecvieieetieriieieeie ettt ettt et e et e ste e beebeesbeessesseesseeseessesssesssesseesseesenssenns 469
SEPATALIONSPEC .. .veereeeieiieti et eteette st te e e e teseteseaessee st enseesseesseeseenseesseenseanseessesssesseenseensesnsesssesseenseenseansenns 469
ShapeCULLINZPATAINSvieiieiieieeiiesiete et se sttt et et e st e st e s teeasesssessaesseenseensesnsesnsesssesseanseenseensenns 470
SREET ...ttt bbbttt bbbt h et b bbbt e h e bbb e b et ettt beebe bt et eneen 470
SHENKINZPATAINSeiiiiiieii ettt ettt ettt et e st et e et et e e e e esee s st e beeseenseeneesneesseenseenseenseens 471
SIAESEWINZPATAINSeitieiieii ettt ettt ettt et e et e et e bt et e e e esteeseesbee st enseeneesneesaeenseenseenseens 472
SPINEPIEPArAtIONPAIAINS.eeuiieiiieiieetieet ettt ettt et ettt et et et e stesaeesseesseebeeeeeneesseesseenseenseens 473
SPINETAPINEPATAMSconiiiiiiiiie ettt ettt et s b e b e b e bt et st e seeesbeenbeeteenteens 475
STACKINZPATAINS ...coueiiniiiiie ettt sttt ettt et e bt e s bt e bt e bt e bt s atesatesbeeneeenbeenteens 476
SHICRINGPATAMISceeiiiiiiee ettt ettt ettt et e s b e s bt ebe st e sbtesbeenbeebeenteens 479
N5 21 o OO PRPRUPROt 482
SHEAPPINGPATAINS.ecviieiiiiieiieie ettt ete et et e st este e bt e b e esbeeseeseeseesseessesssessaesseessesssesssesseesseeseessenns 483
SHHAPBINAINZPATAINSeovviiiiiciiieieeiiesieeie ettt te et e et e et e eteesse e beesseesseessesssessaesseesseensesssesseesseesenssenns 483
SUITACE. ...ttt ettt b e bbbttt e bt bt bt ebe et bt et et et na e bt eheeae et eneen 484
ThreadSealiNgParamsS..........ccuieiirieieieee ettt ettt ettt e et essae st eesseesseensesnaesseesseenseenseensesnsenseensens 490
ThreadSEWINGPATAIMSc.iecvieieeiieiieieeteete sttt te et e st esteeseeesteeseesseeseesseensessaesseeseensesnseenseensenssenseensens 491
L ettt ettt ettt ettt ettt ettt n e a e et et e he Rt eRe e Rt estensen s et et e Rt st eseentensensenseteeseeseeneenteneensenee 492
070) USSR 493
THANSTETCUIVE. ...ttt a e b e h et et e et e s bt e s bt e bt e aae st e sae e bt et e enbeeateebeenbeenbean 493
TTaANSTEICUIVEPOOLottt st ettt a e s e et et e beebeeaeebe e st eneeneeneenes 494
TransferFunctionNCONTIOLcouiiiiieie ettt ettt sttt st sbee b enaeas 494

Page xviii

Page xix

7.2.149 TrapPIngDEtaAIlSiccvieiieeieetieitieiieie ettt ettt et et eeteeste e beesbeesbeesaessaesseesseessesseesseesseesseenseesseesseessensaenneas 495
7.2.150 TTapPINZPATAMSccueecvieiieiieeiieiieie et ete sttt ettt et e et este e beesbeesseessessaessaeseesseessesssesssesseenseessenssesssenseesens 496
2 B I I 1) 2 5 1o USRS 499
7.2.152 TriMMINGPATAIMSooiiiiiiiieiieiieie ettt et ettt et et et e enbeesbesaaesseesseenseensesnseesaesseenseanseansesssenseensenn 500
7.2.153 VerifICatiONPATAIMSc..eiuiiiriiiiiiiieieteteeterte sttt ettt a et b e e bt ettt et et e b seeebeebeeat et esaenee 501
7.2.154 WireCombBIiNdiNgParams.cocuieiuiiiiiieiierieee ettt ettt sttt e ettt ese e ste e et enteeneeeneesseenean 501
7.2.155 WIAPPINZPATAINS ...ooutieiiieiieetiet ettt et ettt et e st e bt et eateeseessee bt ebeeneeemeesaeeeseenseeseenseenseeseenseannenn 502

7.3 Device Capability Definitions

Chapter 8 Building a System Around JDF..........coo o imiircmrrecrr e e e s s sme e s e s smeeeas 513
8.1 Implementation Considerations and GUIdeliNesccccccccciriiir e 513
8.2 JDF and JMF Interchange ProtocCol.........ccccoiiiiiccisecciiir s ssccssecere s s ss s sssms s e s s s ss s sssmn e s e s e snsnssnnn 513
8.2.1 File-Based Protocol (JDF 4 JIME)ccoviiiiiieiet ettt ettt et e e s ensesnseenaenseennean 513
8.2.1.1 JMF transport using the File ProtoCOL..........cccieoiiiiiieiieieiieiieie ettt 513
8.2.2 HTTP-Based Protocol (JDF 4 JIME)... ..ottt ettt sttt et ene e neeneeeneas 513
8.2.2.1 Protocol Implementation Detailsccoocieiieiiiieiiei e 514
8.2.3 MIME Types and File EXtENSIONSccueeouteiiiieriieiteiteie ettt eet et ettt te st e seeesteeaeeestesseesseenteenteeneesseenneas 514
8.2.3.1 MIME FIIAS...etiiteitieiiee ettt etttk s h e bt e et a et e e e besbe et e et eae e bt eneene et ennan 514
8.2.3.1.1 COMLEIE TYPC. ittt ettt ettt st b ettt et e a e b e bt et eabeebtesbeenbee bt eneeseeenaie 514
8.2.3.1.2 Content ID ...ttt sttt et et 514
8.2.3.1.3 Content Length.........ccoiieiiiiiiieii ettt ettt e eenbeenneenaeens 515
8.2.3.1.4 Content Transfer ENCOAINGc.occiiriiriieiiieiieie ettt sre e se e sene e 515

8.2.3.2 Example Packaging of Individual JDF/JMF files in MIMEc.ccocciininiiiiiiinininincnenceeeeee 515
8.2.3.3 CID URL SCHEIME ...euveiiiiiieiieientieiestt ettt ettt ettt et st b e bttt ebeene et eneen 515
8.2.3.4 Ordering of JDF/JMF in MIME Multipart/Relatedcccceeerienienieniieecieceeeee e 516
8.2.4 IsSuEs With HOt FOLAETScoouiiiieiieiiee ettt et ettt ettt et e e e eneenseenean 516
8.3 MIS ReQUIrEMENESceiiiiieii i e e n e e a e e nn e e nann e e aan 516
AppendiX A ENCOAING.....coi it 517
A1 XML Schema Data TYpPesS......ccceiiiimmmiinieiriinssss s s s s s s s ne s 517
N | T o T |- N Y T 518
AL2.1 CIMYKCOIOT ittt ettt ettt ettt e bt e aeeh e e st en e e s e eseebeseeeb e emeeneen s et eabeseeeteabesaeeneeneeneennans 518
A2.2 DateTIMERANZE......eoiiiiiiiieii ettt ettt et et eebe s e s eesaeesseesbeesseesseessesssesseesseessasssessaesseensesssesseenees 519
A23 DateTIMERANGE LISt ...cccviiiiiiiiiieiiieii ettt ettt te e b e e b e sstesteesseeseesseesbeessesssesseensaesseensenssenseenses 519
A2.4 DUFAIONRANEZEooviiiiiiicie ettt ettt et e e sae s teesae e beesbessseesseesaesseesseesseessasssesaesseenseessesssenens 519
A2.5 DUTatioNRANGELISTc.eeeuieiieiieieeie ettt ettt et et e e s ae s e e see st enseenseeseesssenseenseensensaeseenseensesnnenees 519
N I U1 (< 43 o 5 T SRR 519
A2T INEEEETRANGE ..ottt et ettt sttt et e st st e at e st eats 520
A2.8 INtEGEIRANGELISEooouiieieiiee ettt et ettt e s et e et e bt et e e ae e st e b e e bt et e enteeneeeee 520
N 7 151 (o USSR 520

Page xix

Page xx

ALZ2T0 0 MIAITIX ¢ttt ettt et bttt b e bt bt e st et e b e s b bt e bt eh e e bt e st en b et e bt bt ekt b e bt eh b enten b et et e henhe bt eae et entens 520
AL21T NAMEACOIOT .ttt b e h e bt a e st e st e bt b e s bt eb e bt e st es b et et et e s beebesbeebeeneennennens 521
A2.12 NAMERANGEcouviiiiiiiiieee ettt et ettt e be e st e e bt e ettt e bt e sabeeeabeesabeesabeenateesabeennteesaseenaes 521
A2.13 NAMERANGELIST.....cuuieiieieeiieciieiiee ettt ettt et e e e tesaessee s st esseesseessesseaseanseenseassensaenseensesnsesnsenees 522
DIOUBIELLISE ...ttt et ettt et e b e bbbt bt e ettt e et b e e bt bt eat et et et b bt ebe et et et ens 522
D T0] 1 10] (<] 2 T PR SRS 522
D T0] 0] (<] 2 1Y) 55) SRS 522
AL217T PDFPALN oottt ettt ettt ae e n e a e et et e b e ke st n e e Rt e st et et ensente st eseententensennn 522
AL2.18 RECLANGIC ...ttt ettt ettt aeea e e et et et e b e ke seeeb e e st eneen b et en b e seebeeneeneeneeneennentans 523
A2.19 ReECtANZIERANEE.eiuiiiiiiiiiiiieet ettt ettt s e e s b et e bt et ea e e bt e bt e b e enbeenbeeaaesaeenee 523
A2.20 RectangleRANGE LISToouiiuiieiitieiieiieie ettt ettt sttt et e et et e te bt e bt st e st et e e ebeebeebe et ene et ennenens 523
AL2.2T SRAPC....eiitiectieeee ettt et b et et et e e b e e be e b e erbearteere e st ese e beesbeesbeesbeats e baenneenseenaeereenees 523
A2.22 SRAPCRANGE......ccuiiiieiieiicie ettt ettt ettt e et e et e s e e te e be et e erbeereeereeeae e beerbeesbeesbeeta e baenseenbeenaenneenees 524
NN TN 1 Yo TS) T e<) 55 £ SRS 524
A2.24 SRGBECOIOT ...ttt ettt ettt et ettt bt et b e bt bt et et nt et bbbt bt bt et eaees 524
N I S 1 TS 2V (USRS 524
IDeprecated in JDF 1.2. Renamed t0 DateTIMERANEGEo.ovovviveieoeeeeeeeeeeee oo 524
A2.25 TransSferFUNCHIONc.coiiiiiiiieiieee ettt ettt ettt b e st be et ea et et et saeebeebeebe et ennen 524
AL226 XY PNttt bbbttt h e bt h e et et a et be bbbt ea et eneen 525
g D Q4 o2 110 2.1V TSRS 525
A2.28 XYPaATRANZELASTccuieiiiiieiiieitiee ettt ettt et et st e st et e e et et e eneeen e e se e b e enteeseenneenseeneeeneeene 525
A2.29 xpath _ .. 526
A2.30 XY REIALON ..c.titiitiiieieeite ettt ettt ettt bbbt e st et et et b sb e bt e bt ea b et et e b sb e e bt bt ebe et eneen 526
A.3 JDF Data StruCtUreS........ciciiiiireriin it e an e 526
NG T O 15 1)< OSSR 526
A4 JDF File FOrmMAtsccoiiiiicni s s e s 526
A4l MIME File PACKAZINGeeeieiieiieeiieeieetee ettt ettt et et et e et e bt et et e es e e s eenneenseenaesneesns 527

A4d1.1 IMIIMEE BSICS ...ttt sttt ettt ettt ettt et e et st e st e e et et e se e eb e e et es e emeen s et e aseabesaeebeeneeneeneannan 527

A412 JDF Agent and Consumer REQUITEMENTScouerieieieieieiteeie ettt 527
A42 HTTP 1.0 FIELA. ..ottt ettt ettt e sttt e e bt e st es e et et e aseeteebesaeeneeneeneennans 527
AA3 PNG IMAZE FOTMALoooiiiiiiiiiiieiieeee ettt ettt ettt e stt e e stte e sbteesateesbeessaeesseeeseeenseeenseesnseesnseess 527
2N o] 0=T o Lo [= ST od o T 4 - T PR 529
= 70 TR 6 =11 4 Vo I N 1 = 529
B.1.1 Using Xsi:type With JDF INOGEScccuiiiiieiieiieeiieiieieeie ettt et sttt et steentessae st aessaenseensesnsesnnennes 530
B.1.2 Using Xsi:type With JIMF MESSAZES.......eecterieriieiieieeiesieseesteeteetestesetesseesseessesssesssesseeseensenssesnsennsesnsennes 530
Appendix C Converting PJTF to JDF ... s s s nanes 531
C.1 PJTF Object CONVEISIONcoccciiiiiiiiiiniis s s s s s s e nnan 531
(O I B X1 133U YO RRS 531
Col.2 AQAIESS ittt ettt ettt ettt h et e ettt e ke heeh e e Rt ea e ea b et ekt eRe ekt e Rt eaten e et e teateeteeheeneeneeneennennens 531
(O B TN (-1 £ OO R USRSt 531
Clid AUAIEODJECL ...ttt ettt ettt et e et e et et e e heehe e st emtem s e s e beeb e et e ebeeaeeseemtanseseeseaneseeeneeneeneennans 531
C.1.5 COIOTANTAIIAS ...ttt ettt b et h st e e et e b e s bt eb e e bt e bt e st et e be b e steebesbeebeeneennennens 531
C.1.6 COlOTantCONIIOL. . .c.etiiiiiiiieteiietet ettt b et ettt et ettt b e s bt b e st e st es b et et et e s beebesbeebeeneeneennens 531
C.1.7 COlOTantDELAILS.cuetiiitiiteetieitetete ettt sttt eh et e et bt s bbbt e bt es et e e b e st e e besbeebeeae e e entens 531
C.1.8 ColorantZoneDELailscceeiiieiiriiriirierieieeie ettt ettt sttt ettt st st ebe et tens 532
C.1.9 COlOTSPACESUDSIITULEecveeiieiieiieie et ete st et et ete et e st et e e be e seesaesstessee st esseenseensesssesseanseensaenseensesnsesnnennes 532
(O I (0T B 1<) 1<) 2RSS 532
(O I B B B T 17T o) o) s LA SRR S 532
(O I U B 1o o1 133313 o | SRR 532
CoL13 FANISIING. ..ctiiietieiieieee ettt ettt et e et et et e tesse et e eseestensens e seeseeseeseeseensansensesseasesneeseeneensennans 533
CL.14 FONEPOLICY ...ttt ettt ettt et h e et e st e st et e b e et e e be e et eb e eseeneem s et enseseebeaaesaeeneeneeneennans 533
CLLlIS TNSEIEPAZE ...ttt b e bttt et e a e s at e e bt e a e e bt et ea e e bt e eb e e b e e bt enteeatesaeenaee 533

Page xxi

Col.16 TNSEIESREET. ...ttt ettt et b e bbbt eh e es e et et e st e e bt s bt eb e eaten et e s beebesbeebeeneeneennens 533
[O 0 B A 11170311 (o) OO PRP 534
CLLlL8 JODTICKEE .ttt ettt bbbt b e bt s b e bt e bt e bt et et et e st e e b saeebeeaeeanennens 534
C.1.19 JODTICKEICOMNEENLS ..ottt ettt st ettt ettt ettt ettt sttt e sttt b e s bbbt e bt e st et e benbestesbesbeebeeaeennennens 534
G200 JTFILRu ettt ettt ettt st b e bbbt e a st e b e b s bt e bt e bt e bt eb s et et et e s teebesaeebeebeennentens 535
CLL2T LAYOUL cutttittittetiettetie ettt sttt e et est et e be s st et e eseeseessensensees et e eseaseeseessansasseseeseeseeseansensansansensesseaseeneeseeneansennans 535
(O3 0 Y, [T RSSOt 535
C.1.23 MEAIASOUICE ..ottt ettt ettt ettt e e e et e et e bt et e emteemeesaeesaee st e et emeeemeeeaee st anseemteeneeaseeaseenseenseensesneesne 536
Cl.24 MEAIAUSAZE. ..ottt ettt ettt ettt ettt e e e b e e b e s bt e bt et e e st e shtesbeenbe e bt eat e es b e ebeeeb e e b e e bt enbeeaaesaeenae 536
CLl25 PAERANGE....c..eeuiiiiiieiieeiet ettt ettt a et b ettt e bt e s bt e s bt e bt e et e et e eat e eh e e b e e bt e b e e bt et et saeenaee 536
C.1.26 PlACEAODJECL. ...ttt ettt ettt et a et e et et e e aeeh e st e st em s e s e beeee et e ebeeaeen s et enseseeseaneeeeeneeneeneennans 537
Cl1.27 PIANEOTAET ...ttt ettt ettt bbbt hees et e e b e st e e bt ebeeb e e st en b et e sbeebesbeebeeneennentens 537
CLlL28 PIEfliGt...ciceiiceieciieiieieee ettt ettt et e et e et esaaeste e beesseessesseesseesseesseesseessesssanssessaenseensesssessnenes 537
C.1.29 PreflightCONSIIAINEeccviiieiieiiesit ettt te et e st ettt et e s teseaessee s st esseensessseeseesseeseenseensesnsesssesaenseensesnsesnnesees 537
C.1.30 PreflightDEtail......cc.eeiieieeie ettt et st e st e e et e s st e s st e sse e seenseenseessensaesaenseensennsesnnenees 537
C.1.31 PreflightInStanCe.cccvieiieieiiecie sttt ettt ettt et e s ee st e st et e estesseeesee st enseenseensesssensaesaenseensesnsesnnennes 538
C.1.32 PreflightInStanceDEtail..........coiiiiiiii ettt ettt ettt et e et e e st et e b e e neenteeneeeneeeee 538
C.1.33 PreflightRESUILS ...oueieieieeeeeeee ettt ettt et s e s et e s bt e et e e e neeene e e bt e eseesseenneenseeneesneenes 538
(O G 7 S o o111 5) | SRS RRR 538
(O T T o0 (o) 1 (OO OO OSSPSR 538
C1.360 RENACTING ...ttt ettt ettt ettt a et e et et e e bt eheeseesten e e e e s e eseeeeebeeaeeseemtensesesseaneeaeeneeneenseneans 538
C.1.37 RESOUICEALIAS. ...ttt ettt ettt et ettt e b et e eae et e e bt e st en b e s e teebe et e ebeeaeeseemtens e sesseabeseeeneeneeneennans 538
CL1.38 SCREAUIING........eeitiiiieiieieete ettt et ettt e st e e et e et eseaesaaeste e seesseessesssesseesseesseesseassesssanssensaessennsesssessnenses 538
C.1.39 SHZNALULE ...vvenvieiiieiieeie e etteseesteeteeteesteeteeeteesseesseesseessesssasssessaesseesseasseasseassesssenseenseessenssanssessanssesnsesssesssensns 539
O] 1T 539
C21 SHPSREET ..ttt ettt et et h bt b e ee et et e a e s bt b e e bt et e e st et et et e b s heebe et e e entens 539
€22 SUITACE. ..ttt ettt ettt b e bbbt ettt b e bt e b e e bt e bt e st eatea b et e st e e b bt ebe e bt e e enent 539
€23 THLE ettt ettt b e bbbt et et ettt bbbt et et et et he s he bt et e e nens 539
(O b ¥ o) o) 1SR 539
C.2.5 Trappin@DetailS.......cocueeiiiiiiieiiee ettt ettt ettt h et ettt e n e e ae e b e e be e te e teenaeeneeeeee 539
C.2.6 Trappin@ParameELersccceeiuiiiiiieetieetieite et ettt ettt et ettt e s aee st e e bt et e eneeeneeesee st e seenseensenseeneenseeneeeneeenes 539
C.2.7 TIAPREZION . ..ottt ettt ettt e a e st e b e bt e bt e st e s atesbeesb e e bt ea et eaeeebeeebeenb e e beenbeenbeemaesaeenae 539
C.3 Translating Values ... s s s s san e s 539
C.4 Translating the Contents Hierarchy ... e 540
C.5 Representing Pages.......cccccerireirrrircssrrrirssrrersssssrerssssssesssssnsesssssssesssssssessssssnsesasssnsesssssnsessasnnesanss 540
C.6 Representing Preseparated DOCUMENLS...........cccoeeeeierinesmrrinssere e e re s s mr e ee e e ee s meeeeas 540
C.7 Representing Inherited CharacteristiCs........cccoviiiiiimiiiiiiiccc e 541
C.8 Translating LayOuULccoeiiiiiiiicciciesie s cccsssrr e ss s s s ssssne e s s ss s mnn e e e e e s e s s s mnmn e e e e e eenn s snnnnennsnnnnnn 541
C.9 Translating PrintLayout...........ccccciiiiiiiiiiccciirr s ssscsssesr e s ss s ssss s s s e e e se s smnsn e e e e s s s s smmmne e nnnnnsnn 541
c.10 Translating TrapPing ..o 541
Appendix D Converting PPF t0 JDF ... s s s s s ssans 543
D.1 Converting PPF Data TYPESccicciiiiiiiiiriiir s s ssss s s ssssss s s ssssss s s ssssss s ssssss s s 544
D.2 PPF Product Definitionscccciiiiiimiiniir s s s 544
D.2.1 Comparison of the PPF Component to the JDF COmpPonent...........c.cccuevreevreecreeieieeieenieere e sveesveene e 545
D.2.2 COILEOUME ..ttt ettt etttk h e ee e bt et ea et et e aesbeeb e esees e emeem s e s e eseebeeaeebeeneemsenseebeeaeeseeneeneennennans 545
D23 GANETING...cutieeieciiiiieieete ettt ettt et e e et e s te et e e s beesbeesbesseesseesseesseessesssesseesseenseesseesseessanssensaenseenseensesreenees 545
D24 THICAASEWINZ...cuviivieiieiieieiteeitestteste et ettt et e steesteesbeesbeessesssesseesseesseesseassesssesssesseesseessenssanssesaessenssenssesssenses 545
D.2.5 SAAALESHIECRING. .. .c.vieiiiiiiceiecieceeit ettt ettt ettt e et e st e s teesbeesbeessesseesseesseesseessaesseessanssesaesseensesssesseenees 546
LD 0 T 1] 1143V 546
D I 14 [11 1 PR 546
D.2.8 ENASKEEIGIUING ...c.eeeiieiieiieiicie ettt ettt ettt e s e s ee st e s st e st esseessesstesseenseenseensasssensaenseensesnsesnnennes 546
D.2.9 AdRESIVEBINAINGeiiiiiieiie ettt ettt st h et e ettt en e ne e bt e b e et enteenteeneeees 546
D210 TIIMITNE. .. .teetieteeieeie ettt ettt et et e et este e et emteemteeseesseessee st anseemseeaeeeneeese e st anseenteeneaaseeseenseenseeneesneenne 547
D211 GIUINZIN .ttt ettt et ekt e he et e st e st en s e s et e e et et e ebeeaees e entenseseeseaaesaeeneeneeneeneans 547

Page xxi

Page xxii

D212 FOIAING c..vveiieiieieeieeteee ettt ettt ettt e et e e te et e e sbeesb e e st essaesseessaesseessesseesseesseesseesseessesssanssensaenseensenssessnenens 548
D.3 PPF Sheet StruCture........cccucoiiiiiiiiiis s s 549
D31 AdminiStration Datacoeeiieriiiiieieeere ettt ettt sttt et aen 550
D.3.2 PreVIEW IMAZES ..eouvieieeieeiie ettt ettt et stt et et e e et e st essaesse e seessesstesseesseesseenseanseassesseanseesaenseensesnsesnnennes 552
D.3.3 TranSTEI CUIVES ..cuviutiiiiiieeieeitet ettt ettt st b et eh ettt st b e s bbbt e bt e st et et et e st e e b sbeebeeaeennennens 552
D I R Y 4 1) QLY 3 4 <SRRI 552
D.3.5 Color and INK CONIOL.....ccuiiiiiieiieie ettt ettt ettt ea et e st et e ent e e st e sbeesbeeneenseeneesneesne 553
| I B O 11510V D | - SO S 554
D37 FOIAING DAttt ettt ettt st bt e b ettt e it e bt e e b e e b e e bt e b et e atesaeenae 555
D.3.8 Comments and ANNOLALIONSceueruirterterteetieitettetentetesteete st eteeseestensesseatesseeseeseeseessensenseasesseeseeseaneeneenseneans 555
D.3.9 Private Data and CONENt........coc.eiriiiiiiiiiieiieeeteee ettt ettt sttt et et et satesb e e s b e e b et et saee e 555
Appendix E Modeling IfraTrack in JDFcooccooiiiiceerrrccce e rsscmr e e sssms e s ssssss e s sssssne e s ssssms s ssssmeessnanes 556
E.1 IFRA Objects and JDF NOAESccccvrreiirrircarrrrrssrerssssmne s ssssne e ssssme e sssssme e s sssms e s ssssmsesssssnsessnsnns 556
0 O B O o) [T A (3L Tt & o) PR 556
E. 1.2 TFRA ODJECt HICTAICHY ...cueeiiiiiieiieit ettt sttt et et eenaesse et e ensaenseenseensesnnennes 556
S O B O o) 1T A0 1SR 556
E.1.4 Deadlines and SCheUIINGcc.eeiiiriieiieieeeet ettt ettt et ettt e e es e b e e neenteeneeeneesee 557
E.2 JMF Messages that Translate IfraTrack Messages..........ccccvvimiinniinninnnsnnsns s 557
Appendix F Mapping between JDF and IPP.............coooiiiininin s 558
g B | o e = {1 =Y 1= 558
Appendix G StatusDetails Supported Strings ... ——— 559
Appendix H ModuleType Supported Strings ... 561
Appendix | Supported Error Codes in JMF............coiiiiiiiicccccsecrrre s sssssses s s s s s s s smsnsssssssssssnnns 562
AppendixJ NotificationDetails ...t 563
J.1 Predefined NotificationDetailsccccccririiiniiminin 563
J.1.1 BATCOMER ...ttt ettt b e bbbttt na e bbbttt nee 563
Ji12 FONKEY -ttt ettt h et b bt a et et b e bt e bt b e bt e st et et et e st e e b bt ebe bt e e ennens 563
J.1.3 SYSTEMTIMESEL.cuvieiieie ettt ettt et e bt et e et e s ste st esseenseesseessessaesseesseensesnsesssesseenseensennsenns 563
L B 11013 L PSR 563
J.15 25 (o) TP 563
L O /<) 1 A TSP PRRS 563
N o] 07T 0 Lo T G G =5 €= 1 11 o L= 565
O T = T 4 1= -0 1 o[565
KL T BefOre PrOCESSING. .. ccviiiiiiiiieitieiteett et ete et e st eteesteesteseaestaesteesseessesssesseesseesssesseesseassesssansseseesseensesssesssenses 565
KLiL2 ASEOr PrOCESSING . oouviiuiiiiiieieiiecite ettt ettt e e et e et estaeste e beesseessesseesseessaesseesseassesssanssessaesseensenssesssenens 565
7 o (o T ¥ T2 R 1 0 566
K.3 Spawning and Mergingccccccemriiiiscsssmmrmmriissssssssssesssssssssssssssssssssssssssssnsnsssssssssssssssnssssssssssssnnnns 567
K.3.1 Example 2 Component JDF before SPaWningcceecerierienienieiiesiesiereeieeie e seeseeessee e esesae e ses 567
K.3.2 Example 2 Component JDF Parent after spawning the cover node...........ccceceevvevienininenenienieeieienienenns 568
K.3.3 Example 2 Component JDF Spawned N0AE.........c.oeouiriirieiieiieiieie et 569
K.3.4 Example 2 Component JDF after Mergingccceereeierierieiieiiee ettt s e 569
K.3.5 Example of a Partitioned ImageSetting Node before Spawningccoeceeeerienieiieiineneceercee e 570
K.3.6 The Spawned Cyan Partition of the ImageSetting NOdeccoieiiriiiiiinieeee e 571
K.3.7 The Root Partitioned ImageSetting Node after Spawning............ccccoooeriiiririiieieneese e 571
K.3.8 The Merged ImageSetting NOGEccoiiiiiiiieeeee ettt ettt be e e e neens 572

Page xxii

Page xxiii

K4 Conversion Of PJTF t0 JDFcoiiiiieeiiiiiiiiisssesississssssssssssss s sssssssssssssessssssssssssessssnssssssssessesnnen 573
KA. T PITF INPUL c..oitiiiieieciecee ettt ettt e vttt et e et e ettasts e ba e baesbeessesstessaesseesseesseasseassesssanssessaessesnsesssessnenses 573
KA. 2 TDF OULPUL ...ttt ettt et e s bt ettt e bt e e bt e bt e e bt e eabeeenbeesabeeeabeesabeeeaseesabeeeabeesabeesaseess 575
K.5 Conversion of PPF to JDFieeeeeeeeeeeenennnnnnnnnnnnnnnnnsnsnsnsnsnsnsnsssssssssssssssssssssnsnsnssssnsnnnn 576
S T U T 1|13 N 581
S A | =T T =N 583
K.7.1 Simple KNOWNIMESSAZESccveeueiiuieiietieteeieeieeette st esteesteeaesetesaeesseenteeneeeneeeneesseanseanseenseensesneesaeenseeneesneesnes 583
K.7.2 Simple persiStent ChanNel...........coooeiiiiiiiieee ettt ettt ettt e eee 584
Appendix L JDF/CIP4 Hole Pattern Catalog..........ccoooimiiiiiiiiiiiiii s ssms e 585
Appendix M Color Adjustment Attribute Description and Usagecccccoviiiciiiiimmniincncccceceeeenn, 594
M.1 Adjustment using direct attributes............oo i —— 594
8.4 N.2 Adjustment using ICC Profile attributesccccrirricmmrrnccerre e 595
8.4.1 N.2.1 Adjustment using an ICC Abstract Profile attribute...........ccceevieviiiiiiiirieneecceeeeecee e 595
8.4.2 N.2.2 Adjustment using an ICC DeviceLink Profile attribute.............cceoveeuiecierienieniereee e 595
Appendix N Input Tray and output Bin Names........cccccciiiccccimemmriinsssccssssese e ssssssssssseee s s esssssssssmsssnees 596
PN o 0=1 o Lo [Q@ TR 1V U=V 1= TR T 3PP 598
Appendix P New, Deprecated, Modified, lllegal, and Removed Itemsccccoecrrrrrriiiccisccnrnnnn. 602
P.1 3 T (=Y 1 1 602
P.2 Deprecated IteMS ... 602
[T |V Lo Yo 1= o N 1 =Y o o 607
e | =Y T 1IN 1 =T 4T 607
o TR &= 1 Lo 1Y =T = 1 1= 607
P.6 New/Modified Attributes and Elements.............cciiiiiiiiieciiiiiiiiieeein e rssssssssss e sssssssssss s s ssssaes 607
P.6.1 Structure of JDF NOAES and JODSooooeiiiiiiieecee et eenaeee e 608
P.6.2 JDF Messaging with the Job Messaging FOrmat............cccovcueiieiienieiiieiicieceeseeie e e 610
P.6.3 PLOCESSES vttt ettt e e e e e e ——— e e e e e e e e ———aaeeeeeae———aeaeeeaaaarbaaaaeeeanaraes 611
PL0.4 RESOUICES ..uveeiiiieeiiiieiiee ettt e ettt e e e e e e e ettt ae e e e e e eeeeataseaeeeeeeetasseaeeeeeaentssseaeeeeeeeassaseeeeeseennnnrees 614
843 PAGELISt..ccuiiiiiiiee ettt eas Error! Bookmark not defined.
Appendix Q Table of TabIes.......cciiiiiicirire s e s s e mmnn s 631
Appendix R Terminology USagecccciiiiiiiiiiiin s s s s ssssss s s s ssss s s ssanes 637
AppPendiX S Errata.......cccciiiiiiiiii i 640

Page xxiii

Page xxiv

Table of Figures

Figure 2.1 Example of JDF and JMF workflow interactions............ccccuueeiiiiiiiiiiiiiieceee e 14
Figure 2.2 JDF 1re€ SITUCIUIE ... e nnaeees 15
Figure 2.3 Example of a hierarchical tree structure of JDF nodes..........cc.cccooviiiiiiiiieiiiiicceeeee e, 17
Figure 2.4 Example of a process chain linked by input and output resourcesccccceviieiiiiien e, 18
Figure 2.5 Standard coordinate SYSEMiiiiiiiii e 19
Figure 2.6 Examples of Transformations and Coordinate Systems in JDF...........ccccooiiiiiiiniii i, 28
Figure 2.7 Transforming @ point (EXAMPIE).......couuiiiiiiiiei e 30
Figure 3.1 Structure of the JDF NOGEooiiiiiiii e e 32
Figure 3.2 Structure of JDF Generic CONTENTS........coooiiiiiiiiiie e 35
Figure 3.3 Job hierarchy with process, process group, and product intent nodescccccceeeiiiiinnnee 41
Figure 3.4 Structure of the abstract reSOUrCE tYPES.......cociiiuiiiiiiiiiee e 55
Figure 3.5 Resource Links and RESOUICERETSccceiiiiiiiiiiiiic e 62
Figure 3.6 NOdes liNKEd DY @ FESOUICEccuuuiiiiiiiee ettt e e e e e e e e e e e e e b e e e e e s e nnnreees 64
Figure 3.7 Structure of the abstract ResourceLink types..........cooviiiiiiiiiie i 66
Figure 3.8 Splitting and combining physiCal FESOUICES...........coiiiiiiiiiiiie e 90
Figure 3.9 Structure of Audit element types derived from the abstract Audit typecccooiiiiiinnnne 92
Figure 4.1 Simplified PrintTalk workflow (negotiation phase).........cccooceiiiiii i 110
Figure 4.2 Life Cycle of @ JDF NOAEcooiiiiiiiiiiie e s e 113
Figure 4.3 Example of a simple process chain linked by reSources............oocooiiiiii i 114
Figure 4.4 Example of a Pipe resource linking tWo proCeSSESccuuuiiiiiiieiiiiiiiee e 117
Figure4.5 Example of status transitions in case of overlapping processing..........ccccovcveeeeiiiieeesiiieeennns 117
Figure 4.6 The spawning and merging mechanism and itS phasesccccccouiiiiiiiiiiei i 122
Figure 4.7 JDF node structure that requires resource copying during spawning and merging................ 124
Figure 4.8 Example for a JDF node structure with nested spawningccccccoviiiiiiiiiiicciieee e, 126
Figure 4.9 Example of the spawning and merging of independent jobs............ccccceveiiiiiiiciicen e, 127
Figure 4.10 Parameter Space in device Capabilities............ccceeeeiiiiiiiiiiiie e 131

Page xxiv

Page xxv

Figure 5.1 Contents of a JMF root element and the message families ..., 134
Figure 5.2 Interaction of Messages with @ SUDSCPLON ... 135
Figure 5.3 Interaction of Command and Acknowledge MeSSages ... 140
Figure 5.4 Mechanism of @ PIDEPUIl MESSAGE. ... -ooooooooo oo 170
Figure 5.5 Mechanism of @ PipEPUSh MESSAQEcooi oo, 173
Figure 5.6 Effects of the global queue messages on the queue Status ..., 185
Figure 6.1 Worst case scenario for area coverage calculation..............cccooiiieiiiiiiiiiiiieeee e 206
Figure 6.2 Packaging Process Coordinate SYSIemoooiiiiiiiiiii e 236
Figure 7.1 Parameters and coordinate system for glue applicationcccccoeviiiiiiii e 287
Figure 7.2 CaseMaKiNGParamSccuiiiiiiiiie ettt ste et e e e sttt e e e st e e e e st e e e e snbaeeeesnnaeaeenseeeeennnes 295
Figure 7.3 Parameters and Coordinate System for CasingIN..........ccoociiiii e 297
Figure 7.4 Parameters used for channel binding..........ccccuuiiiiiiii oo 298
Figure 7.5 Coordinate systems used for COllECHNGuviiiiiiiii i 301
Figure 7.6 Terms and definitions for COMPONENLScooiiiiiiiiiii e 325
Figure 7.7 Parameters and coordinate system for cover applicationcccooiiiiiiii e 333
FIgure 7.8 CUt Mark fYPES. .. .cooi it e ettt e e et e e et e e e e b e e e e ennee 336
Figure 7.9 Parameters and coordinate system used for end-sheet gluing ... 352
Figure 7.10 Names of the reference edges of a sheet in the FoldingParams resource...............ccco........ 358
Figure 7.11 Fold Catalog Part 1ueeiiiiiie e s 361
Figure 7.12 FoId Catalog PArt 2c.eiiiiiiiiie ettt et e et e e e et e e e e st e e e e sntae e e e snaeeeeenreeeeennnes 362
Figure 7.13 Coordinate system used for gathering...........ccccvii i 364
Figure 7.14 Parameters and coordinate system for glue applicationccccoeviiiiiiiiie i 365
Figure 7.15 Parameters and Coordinate system used for INSertingccoocciiiiiiieiiii i 393
Figure 7.16 Parameters and Coordinate System for Jacketing..........cccceeveiiiiiiciiiiiee e 401
Figure 7.17Parameters and Coordinate System for BlockPreparation..............ccccoveveieiiiiiiiiieeeee e, 452
Figure 7.18 Staple ShapES ... 464
Figure 7.19 Parameters and coordinate system used for side SeWiNg...........cccoooeeiiiiiiiii e 472
Figure 7.20 Parameters and coordinate systems for the SpinePreparation processccccoeceeeenee 474

Page xxv

Page xxvi

Figure 7.21 Parameters and coordinate system for the SpineTaping process...........ccceeevvvvieeeeeiveccnnnee. 476
Figure 7.22 Staple SNAPEScooiiiii e e e e e e e e e e e 479
Figure 7.23 Parameters and coordinate system used for saddle stitChing............ccccoooiiiiiii s 480
Figure 7.24 Parameters and coordinate system used for stitching..............ccccoiii s 480
Figure 7.25 Parameters and coordinate system used for thread Sewingocccceiiiiiiiiiie s 491
Figure 7.26 Parameters and coordinate system used for side SEWINg...........ccoviiiiiiiiiiiii e 491
Figure 7.27 Parameters and coordinate system used for trimming.........ccocceeiiiiiiii e 500
Figure D.8.1 JDF node of a CIP3 product StruCturecoooiiiiiiiii e 543
Figure D.8.2 JDF representation Of SNEEtScoiiiiiiiiiii e 550

Page xxvi

Page 1

Chapter 1 Introduction

This document defines the technical specification for the Job Definition Format (JDF) and its counterpart, the Job
Messaging Format (JMF). We will describe the components of JDF, both internal and external, and explain how to
integrate the format components to create a viable workflow. Ancillary aspects are also introduced, such as how to
convert PJTF or PPF to JDF, and how JDF relates to IfraTrack. It is intended for use by programmers and systems
integrators for operations addressed by the International Cooperation for Integration of Processes in Prepress, Press
and Postpress (CIP4). In this first chapter, we present the concept of JDF, how to use this document and some basic
document navigational aids.

1.1 Background on JDF

JDF is an extensible, XML-based format built upon the existing technologies of CIP3’s Print Production Format (PPF)
and Adobe’s Portable Job Ticket Format (PJTF). It provides three primary benefits to the printing industry: 1.) the
ability to unify the prepress, press, and postpress aspects of any printing job, unlike any previous format; 2.) the means
to bridge the communication gap between production services and Management Information Systems (MIS); and 3.)
the ability to carry out both of these functions no matter what system architecture is already in place, and no matter
what tools are being used to complete the job. In short, JDF is extremely versatile and comprehensive.

JDF is an interchange data format to be used by a system of administrative and implementation-oriented
components, which together produce printed products. It provides the means to describe print jobs in terms of the
products eventually to be created, as well as in terms of the processes needed to create those products. The format
provides a mechanism to explicitly specify the controls needed by each process, which may be specific to the
devices that will execute the processes.

JDF works in tandem with a counterpart format known as the Job Messaging Format, or JMF. JMF provides
the means for production components of a JDF workflow to communicate with system controllers and
administrative components. It relays information about the progress of JDF jobs and gives MIS the active ability to
query devices about the status of processes being executed or getting ready to be executed. JMF will provide the
complete job tracking functionality that is defined by IfraTrack messaging standard. Depending on the system
architecture, JMF may also provide the means to control certain aspects of these processes directly.

JDF and JMF are maintained and developed by CIP4 (http://www.cip4.org). They were originally developed by
four companies prominent in the graphic arts industry—Adobe, Agfa, Heidelberg, and MAN Roland, with significant
contributions provided by CIP3, the IfraTrack working group, Fraunhofer IGD and the PrintTalk consortium.

1.2 Document Referencesr;;

This specification assumes that the reader has a basic awareness of, or access to, the following documents:

Portable Job Ticket Format

Version 1.1

Date: 2-April-1999

Produced by Adobe Systems Inc.

Available at: http://partners.adobe.com/asn/developer/PDFS/TN/5620.pdf

Print Production Format

Version 3.0

Date: 2-June-1998

Produced by the International Cooperation for Integration of Prepress, Press, and Postpress
Available at: http://www.cip4.org/documents/technical_info/cip3v3_0.pdf

XML Specification

Version 1.0

Date: 10-February-1998

Produced by: World Wide Web Consortium (W3C)
Available at: http://www.w3.org/TR/REC-xml

XML Schema Part 0+1+2: Primer, Structures and Datatypes
Version (W3C Recommendation of 02 May 2001)

Page |

Page 2

Date: 02-May-2001

Produced by: World Wide Web Consortium (W3C) XML Schema working group

Available at: http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/ and
http://www.w3.org/TR/xmlschema-2/

XML Path Language (XPath) Version 1.0

Version W3C Recommendation 16 November 1999
Date: 16-November-1999

Produced by: World Wide Web Consortium (W3C)

Available at: http://www.w3.org/TR/xpath.html[RP4]

IfraTrack Specification

Version 2.0

Date: June-1998

IFRA Special Report 6.21.2
Produced by IFRA

Available at: http://www.ifra.com/

Spec ICC.1:2001-12[AMCS]

File Format for Color Profiles

Version 4.0.0

Date: 2001

Produced by: International Color Consortium
Available at: http://www.color.org/newiccspec.pdf
PrintTalk Implementation

Version 1.0

Produced by: PrintTalk Consortium

Available at: http://www.printtalk.org/

[first] FIRST — Flexographic Image Reproduction Specifications & Tolerances, FIRST, second edition,
copyright November 1999, available from Flexography Technical Association, www.fta-ffta.org, (631) 737-
6020 or FIRST, 900 Marconi Avenue, Ronkonoma, NY, 11779- 7212

[snap] SNAP — Specifications for Newsprint Advertising Production, see www.naa.org. SNAP (item 70100) and
SNAPShot (item 70101) are available by calling NAA’s fulfillment center at (800) 651-4NAA. Order forms are
available online at www.naa.org/products/form.pdf

[gracol] GRACOL - General Requirements for Applications in Commercial Offset Lithography Version 6.0, see
http://www.gracol.com/[RP6]

[IEEE754] standards.icee.orgikr7iCOnventions Used in This Specification

This section contains conventions and notations used within this document.

1.3.1 Text Styles
The following text styles are used to identify the components of a JDF job:
e Elements are written in sans serif. Examples are: Comment, Customerinfo, and ResourceLinks.
e Attributes are written in italic sans serif. Examples are: Status, ResourcelD, and ID.
e Resources are written in bold sans serif. Examples are ImpositionProof, Toner, and ExposedMedia.

e Processes are written in bold-italic sans serif. Examples are ColorSpaceConversion, Rendering, and
Scanning.

Page 2

Page 3

¢ Enumerative and boolean values of attributes are written in italics. Examples are: true, Waiting, Completed,
and Stopped.

e Standard bold text is used for the following
purposes:
- to highlight glossary items. Examples are

device, element, and job.

- to highlight defined items inside a table. An

example is the data type NMTOKEN in the
table in Section 1.4 Data Structures.

- to highlight definitions of local terms. These

are terms that are of local importance for a
certain chapter, or some sections inside a
chapter. An example is a spawned job in
Section 4.4 Spawning and Merging.

- to designate PPF objects in Appendix D,

Converting PPF to JDF. Examples are
CIP3ProductName and
CIP3ProductComponent.

e For the benefit of those who are reading this
document in PDF or online, cross-reference
links are denoted by gray text. Examples are Chapter 6 Processes, and Section 1.2 Conventions Used in
This Specification. To follow a link, click the highlighted text. The examples provided are not actual links.

Extended

‘ Backus-Naur Form
The Extended Backus-Naur Form (EBNF) provides
a compact notation that is commonly used in the
specifications of programming languages. The
official EBNF standard, ISO/IEC 14977:1996(E), is
not freely available online. To order a paper copy
from ISO, contact:

International Organization for Standardization

Case postale 56

1, rue de Varembé

CH-1211 Genéve 20 Switzerland

Phone: +41 22 749 01 11

Fax: +41 22 733 34 30

Email: sales@isocs.iso.ch

e Also for the benefit of online readers, external hyperlinks are graphically designated. An example is
http://URL.com. To follow a link, click the highlighted text. The example provided is not an actual link.

1.3.2

Specification of Cardinality

The cardinality of JDF Data Types is expressed using a simple Extended Backus-Naur Form (EBNF) notation. The
symbols in this notation may be combined to indicate both simple and complex patterns, as demonstrated in the

following table. A and B represent simple expressions.

(expression) | Expression is treated as a unit and may be combined as described in this list.

A Matches A. A must occur exactly one time.

A? Matches A or nothing. A is optional, or is required only in the circumstances explained in the
description field.

A+ Matches one or more occurrences of A.

A* Matches zero or more occurrences of A.

1.4 Glossary of Terminology

The following terms are defined as they are used throughout this specification. For more detail on job and workflow
components, see Section 2.1 System Components.

Term Definition

| Agent The component of a JDF-based workflow that writes JDF.
Attribute An XML-based syntactic construct describing an unstructured characteristic of a JDF node or
element.
Big job The combined job that independent jobs are merged into in the case of independent spawning
and merging.
Class A set of complex data types with common content in an object-oriented sense. A complex
data type may consist of elements and attributes.

Page 3

Page 4

Term Definition

Controller

The component of a JDF-based workflow that initiates devices, routes JDF, and
communicates status information.

Default

Used to indicate the attribute value that a JDF Consumer must use if an Agent omits an
Optional attribute (as indicated by a "?" in this spec) from a JDF instance. See Section 1.4.2.1
Conformance Requirements for Support of Attributes and Attribute Values.

Deprecated

Indicates that a JDF element is being phased out of JDF usually in favor of newer JDF
element(s). It is recommended that an Agent not include such a JDF element in a JDF
instance. Such an indicated JDF element may be removed from a future version of the JDF
specification. JDF Consumers should only support such JDF elements for backward
compatibility with previous versions of JDF. Deprecated items are flagged with
in JDF 1.1] in this specification.

Device

The component of a JDF workflow part that interprets JDF and executes the instructions. If a
Device controls a machine, it does soin a proprietary manner.[RPS§]

Document set

A set of instance documents presumed to be related.

Element

An XML-based syntactic construct describing structured data in JDF.

Finished page

A finished page is a page of a final product that normally has [RP9]no fold inside. The folds
of the finished product for packaging, e.g., folding letters into an envelope, or z-Folds of an
oversize page in a book [RP10]have no effect on the finished page definition. A sheet of paper
with no fold inside consists of two finished pages (front and back side). If there are folds
seen in a sheet in the final product, the number of finished pages of one sheet is given by
2*¥(X+1)*(Y+1), where X denotes the number of folds in X direction and Y denotes the
number of folds in Y direction, each seen in the completely opened sheet. Examples: One
sheet in a book has two finished pages, one front, one back; a brochure with one fold inside
has four finished pages.

Instance
document

A document that is part of the output of a job. This generally refers to personalized printing jobs.
Each of the individual documents produced from the same input template is referred to as an
instance document. For example, in a credit card statement run, each statement is an instance
document.

JDF consumer

A Device, Controller, Process, Queue or Agent that consumes JDF instances.[RP11]

JMF

Job Messaging Format. A communication format with multi-level capabilities. Structures
information between MIS and controllers.

Job A hierarchical tree structure comprised of nodes. Describes the output that is desired by a
customer.

Job part One or more nodes which comprise the smallest level of control of interest to MIS.

Link A pointer to information that is located elsewhere in a JDF document or that is located in
another document.

Machine The part of a device that does not know JDF and is controlled by a JDF device in a proprietary
manner.

MIS Management Information Systems. The functional part of a JDF workflow that oversees all
processes and communication between system components and system control.

Node The JDF element type detailing the resources and process specification required to produce a
final or intermediate product or resource.

Partitioned Structured resource that represents multiple physical or logical entities, such as separated plates.

resource

PDL Page Description Language. A generic term for any language that describes pages, which
may be printed. Examples are PDF®, PostScript® or PCL®.

Process An individual step in the workflow.

Queue Entity that accepts job entries via a JMF messaging system.

Page 4

Page 5

Term Definition

Reader page A reader page is a logical page as perceived by a reader, for example one RunList entry.
One reader page may span more than one finished page, ¢.g,. a centerfold. One finished
page may contain contents defined by multiple reader pages, e.g., NUp imposition. Reader
pages are defined independent of finished pages.

Resource A physical or conceptual entity that is modified or used by a node. Examples include paper,
images, Or process parameters.

Small job An independent job that is merged into a big job.

Support A JDF Consumer supports a JDF syntactic construct (processes, resources, elements,

attributes, and attribute values) if the JDF Consumer performs the action defined in this
specification for the JDF construct when consuming a JDF instance that includes the JDF
syntactic construct. If the Machine that a Device is representing supports a feature which is
represented by a JDF construct, then the Device should support that JDF syntactic construct.

Tag A syntactic construct that marks the start or end of an element.
Work center An organizational unit, such as a department or a subcontracting company, that can accomplish
a task.

1.4.1 Conformance Terminology

The words “must”, “must not”, “required”, “should”, “should not”, “recommended”, “may”, and “optional” are
used in this specification to define a requirement for the indicated Agent or the indicated JDF Consumer as follows:

Table 1-1 Conformance Terminology

Term Meaning

Must, Mean that the definition is an absolute requirement of the specification.

Required

Must not Means that the definition is an absolute prohibition of the specification.

Should, Mean that there may exist valid reasons in particular circumstances for an implementer
Recommended to ignore a particular item, but the implementer must fully understand the implications

and carefully weigh the alternatives before choosing a different course.

Should not, Mean that there may exist valid reasons in particular circumstances when the particular
Not recommended | behavior is acceptable or even useful, but the implementer should fully understand the
implications and then carefully weigh the alternatives before implementing any behavior
described with this label.

May, Mean that an item is truly optional. Unless specified otherwise, the word “optional”
Optional refers to JDF syntax, i.e., what an Agent may include in a JDF instance, and does not
refer to a JDF Consumer option, i.e., not to what a JDF Consumer may support. If a JDF
Consumer is using a JDF parser, that parser will supply the default values indicated in
this specification, if any, for optional attributes that the Agent has omitted (indicated by
“?” in this specification.) See Section 1.3.2 Specification of Cardinality.

For features that are optional for a JDF Consumer to support, one vendor may
choose to support such an item because a particular marketplace requires it or because
the vendor feels that it enhances the product while another vendor may omit support of
that item. Similarly, one vendor of an Agent may choose to supply such an item in a
JDF instance, while another vendor may omit the same item in a JDF instance. A JDF
Consumer implementation which does not include support of a particular option must be
prepared to interoperate with an Agent implementation which does supply the option,
though with reduced functionality. In the same vein, a JDF Consumer implementation
which does include support for a particular option must be prepared to interoperate with
an Agent implementation which does not supply the option in the JDF instance.

Page 5

Page 6

Note: There is no corresponding “may not” or “need not” term for something that an implementation may
optionally omit or optionally not perform. The term “may not” sounds more like a prohibition. Also, it is better
form to put the requirement into a positive statement. For example, instead of saying that an Agent need not include
an attribute that this specification indicates with a “?”” character, it is better to say that a JDF produce may omit an
attribute in a JDF instance that this specification indicates with a “?” character.

1.4.2 Conformance Requirements for JDF Entities

The subsections of this section define the general conformance requirements for the JDF entities: 1.) attributes and
attribute values, 2.) resources, 3.) processes, and 4.) combined processes.

1.4.2.1 Conformance Requirements for Support of Attributes and Attribute Values

If a JDF Consumer supports an attribute, it must support all of the values that this specification indicates are
required for a JDF Consumer to support (whether or not the attribute is required for the Agent to supply in that
context). If this specification is silent on which values are required for support of an attribute, then the JDF
Consumer must support at least one value in order to claim support for the attribute.

Attributes that are optional for an Agent to include in a JDF instance are indicated by a "?" character
following the attribute name as indicated in Section 1.3.2 Specification of Cardinality. In the description of most
optional attributes there is a "Default = ..." statement that indicates the default value that a JDF Consumer must use
if the Agent omits the optional attribute from a supplied resource in a JDF instance. Such an indicated default value
must have the same semantic meaning as if an Agent includes the attribute in the JDF instance with the same value.
If the indicated default value is the special SystemSpecified value or is indicated as "system specified", then the JDF
Consumer must provide an actual value that depends on the implementation of the JDF Consumer and which may be
configurable by a system administrator. If an optional attribute does not have a default value indicated in its
description and the JDF instance does not include the attribute, then the JDF Consumer must supply a system-
specified value.

1.4.2.2 Conformance Requirements for Support of Resources
If a JDF Consumer supports a resource, it:

1. must support all of the attributes (see Section 1.4.2.1) defined for that resource that an Agent is required to
include in the resource instance (attributes with either no marks or a “+”), and — see section 1.3.2), and

2. must support the JDF:SettingsPolicy (see section 3.1.2), JDFResource:SettingsPolicy (see section 3.7),
JDF: BestEffortExceptions, JDF:MustHonorExceptions, and JDF:OperatorinterventionExceptions
(see section 3.1.1) attributes and all of their defined values. These attributes control the policy that a JDF
Consumer must follow when it encounters unsupported settings, i.e., subelements, attributes or attribute
values in the resource.

1.4.2.3 Conformance Requirements for Support of Processes

All processes are optional for a JDF Consumer to support. However, a Device must support at least one process or a
combined process. If a JDF Consumer supports a process, it:

1. must support all of the input and output resources as described in Section 1.4.2.2 that this specification
defines for that process and

2. may make its own assumptions regarding attributes and subelements of an optional input resource (resources
with either a “?” or an “*” — see section 1.3.2) that an Agent has omitted from the process in the JDF
instance. Therefore, default attribute values defined in this specification are not guaranteed when the Agent
omits the resource from the process in the JDF instance (see section 6.1 Process Template).

3. must find the processes that it supports in a JDF instance and must ignore all other processes, independent of
the SettingsPolicy attribute for those other processes.

1.4.2.4 Conformance Requirements for Support of Combined Processes
All combined processes are optional for a JDF Consumer to support. If a JDF Consumer supports a combined process,
it:[RP12]

1. must support all of the input resources as defined in Section 1.4.2.2 that this specification defines for the first
process in the combined process node, i.e., the first process listed in the Types attribute, and

Page 6

Page 7

2. must support all of the output resources as defined in Section 1.4.2.2 that this specification defines for the last
process in the combined process.

3. may support resources that are used as exchange resources between processes in the process chain of the
combined process, i.e., resources that are both produced and consumed within the combined node.

4. must support resources in intermediate process steps that are nof used as exchange resources between processes
in the process chain of the combined process.

5. may make its own assumptions regarding attributes and subelements of an optional input resource that an
Agent has omitted from the combined process in the JDF instance. Therefore, default attribute values defined
in this specification are not guaranteed when the Agent omits the resource from the combined process in the
JDF instance (see section 6.1 Process Template).

6. must search a JDF instance and find the combined process nodes that exactly match what it supports, i.c., that
match the value list of the Types attribute, and must ignore all other process nodes, independent of the
SettingsPolicy attribute for those other processes.

1.5 Data Structures

The following table describes the data structures as they are used in this specification. For more details on JDF
Schema and Datatypes, see Appendix A Encoding. Data Type entries in bold are built-in datatypes described in
detail in XML Schema Part 2: Datatypes[GCM13].Table 1-2 JDF data types

Data Type Description

boolean[GCM14] Binary-valued logic: (true | false).

CMYKColor Represents a CMYK color specification.

date[GCM15] Represents a time period that starts at midnight of a specified day and lasts for 24 hours.

dateTime[GCM16] | Represents a specific instant of time. It must be a UTC-time or a local time that includes the
time zone.

double Corresponds to IEEE 754 double-precision, 64-bit floating point type [[EEE754], including the

special tokens INF and -INF. This corresponds to the standard XML double with NaN
removed. For details, see [XMLSchema].[RP17]

duration[GCM18] | Represents a duration of time.

DateTimeRange Two dateTimes separated by a “~” (tilde) character that defines the closed interval of the two.
TimeRange corresponds semantically to the time interval (two time instants separated by a
slash) defined in ISO 8601.

DateTimeRange Whitespace-separated list of DateTimeRanges.
List
DurationRange DurationRange is used to describe a range of time durations. More specifically, it
describes a time span that has a relative start and end.

DurationRangeLis | Whitespace-separated list of DurationRanges.
t

element Structured data. The specific data type is defined by the element name.
enumeration Limited set of NMTOKEN (see below).

enumerations Whitespace-separated list of enumeration[GCM19] data types.

gYearMonth Represents a specific gregorian month in a specific gregorian year.

[GCM20]

hexBinary Represents arbitrary hex encoded binary data.

[GCM21]

ID[GCM22] Unique identifier as defined by [XML Specification 1.0] (see Section 1.2 Document

References). Must be unique within the scope of the JDF-document.

Page 7

Page 8

Description

IDREF[GCM23] Reference to an element holding the unique identifier as defined by [XML Specification 1.0].

integer Represents numerical integer values, including the special tokens INF and -INF. This
corresponds to the standard XML integer with INF and -INF added. For details, see
[XMLSchema].[RP25]

IDREFS[GCM24] | List of references (IDREFs) separated by white spaces as defined by [XML Specification 1.0].

IntegerList Whitespace-separated list of integers[RP26].

IntegerRange Two integer[GCM27]s separated by a “~” character that define a closed interval .

IntegerRangeList | Whitespace-separated list of integers and IntegerRanges.

LabColor Represents a Lab color specification.

language[GCM28] | Represents a language and country code (for example, en-US) for a natural language.

matrix Whitespace-separated list of 6 numbers representing a coordinate transformation matrix.

NamedColor Represents a color definition by name. A list of valid NamedColor values is provided in
Appendix A.2.11.

NameRange Two NMTOKEN separated by a “~” character that define an interval of NMTOKEN.

NameRangeList Whitespace-separated list of NMTOKEN and NameRanges.

NMTOKEN A continuous sequence of special characters as defined by the [XML Specification 1.0].

[GCM29]

NMTOKENS Whitespace-separated list of NMTOKEN.

[GCM30]

[RP31]

DoubleList[RP32]

modified in
JDF1.2

Whitespace separated list of doubles. Note that this datatype was named NumberList prior to
JDF 1.2.[RP33]

DoubleRange

modified in
JDF1.2

Two doubles [GCM34]separated by a “~” (tilde) character that defines the closed interval of the
two. Note that this datatype was named NumberRange prior to JDF 1.2.[RP35]

DoubleRangeList

modified in

Whitespace-separated list of double and [GCM36] DoubleRanges. Note that this datatype was
named NumberRangeList prior to JDF 1.2.[RP37][RP38]

JDF1.2

PDFPath[RP39] Whitespace-separated list of path operators as defined in PDF.

rectangle Whitespace-separated list of 4 numbers representing a rectangle.

refelement element or a reference to an element. Used to define candidates for inter-resource linking in
resources.

regExp Regular expression as defined by http://www.w3.org/TR/xmlschema-2/#regexs.

shape Whitespace-separated list of 3 numbers representing a 3-dimensional shape consisting of a
width, height, and length. Unless specified otherwise in the attribute Description, these three
numbers are an X-dimension, a Y-dimension, and a Z-dimension, respectively.

ShapeRange Two s[GCM40Thapes separated by a “~” (tilde) character that defines a 3-dimensional box
bounded by x1 y1 z1~x2 y2 72.

ShapeRangeList Whitespace-separated list of shapes or ShapeRanges.

sRGBColor Represents an SRGB color specification.

Page 8

Page 9

string[GCM41] Character strings without tabs or line feeds. Corresponds to the standard xml normalizedString

modified in datatype [XMLSchema].[RP42]

JDF1.2

telem Text elements that contain larger chunks of character data and may include tabs and [RP43]line
feeds.

text Text data contained in a telem (text element).

TransferFunction | Whitespace separated list of an even number of numbers representing a set of XY coordinates
of a transfer function.

URI URI-reference. Represents a Uniform Resource Identifier (URI) Reference as defined in
Section 4 of [RFC 2396].

URL URL-reference. Represents a Uniform Resource Locator (URL) Reference as defined in
Section 4 of [RFC 2396].

xpath Represents a path to an element or attribute in an XML document.[xpath][RP44]

XYPair Whitespace-separated list of 2 numbers. Unless specified otherwise in the attribute
Description, these two numbers are an X-dimension and a Y-dimension, respectively.

XYPairRange Two XYPairs separated by a “~” (tilde) character that defines a rectangle bounded by x1 y1 ~
x2y2

XYPairRangeList | Whitespace-separated list of XYPairRanges.

XYRelation Defines the relationship between two ordered numbers. One of a set of NMTOKENS, a list of
valid values is provided in Appendix A.2.1129.[GCM45]

1.6 Units

JDF specifies most values in default units. That means you can’t use alternate units instead of the defined default
units. All measurable quantities are stated in double precision. Processors should only specify a Unit if no default
exists, such as when new resources are defined. Then the units must be based on metric units. Overriding the
default units that are defined in this table is non-standard and may lead to undefined behavior. Any exceptions are
specified in the appropriate descriptive tables.

The following table lists the units used in JDF. The representation column specifies the XML representation in
the Unit attribute of resources.

Table 1-3 Units used in JDF

Measurement Unit Representation Remarks
Length point (1/72 inch) | pt Used for all except microscopic lengths (see below)
micron mu Used in :

#iref Media/@Thickness,
##ref Perforate/(@Depth,
##ref ScreeningParams/ScreenSelector/@DotSize,
##ref ShapeCuttingParams/Shape/@ShapeDepth
[RP46]

Volume liter 1 -

Weight gram g -

Area m’ m2 -

Resolution dpi or Ipi dpi or Ipi -

Paper weight g/m’ g/m2 -

Speed units/hour */h Replace the “*” in the representation with the
appropriate unit

Temperature C° (Celsius) C degree centigrade

Page 9

Page 10

Measurement Unit Representation Remarks
Angle degrees® degree -
Countable Objects | 1 - Countable objects, such as sheets, have no unit

specification.

Page 10

Page 11

Chapter 2 Overview of JDF

Introduction

This chapter explains the basic aspects of JDF. It outlines the terminology that is used and is recognized by the
format, and the components of a workflow necessary to execute a printing job using JDF. Also provided is a brief
discussion of JDF process structure and the role of messaging in a JDF job.

2.1 System Components

This section defines unique terminology used in this specification for the job and workflow components of JDF.
Links to additional information is included for some terms.

2.1.1 Job Components

This terminology describes how JDF is described conceptually and hierarchically.

2.1.1.1 Jobs and Nodes

A job is the entirety of a JDF project. Each job is organized in a tree structure containing all of the information
required to complete the intended project. The information is collected logically into what is called a node. Each
node in the tree structure represents an aspect of the job to be executed.

The nodes in a job are organized in a hierarchical structure that resembles a pyramid. The node at the top of the
pyramid describes the overall intention of the job. The intermediate nodes describe increasingly process-oriented aspects
of the job, until the nodes at the bottom of the pyramid each describe a single, simple process. Depending on where in the
job structure a node resides, it can represent a portion of the product to be created, one or many processing steps, or other
job parts. For more information about jobs and nodes, see Chapter 3 Structure of JDF Nodes and Jobs.

2.1.1.2 Elements

An element is an XML syntactic construct. (See also: attributes.)
Within this document, the term refers to the structured subparts of a
JDF node. Technically, JDF nodes are themselves XML elements.
However, within this specification, “node” is used to distinguish
between the independent JDF aspect and its subparts. Furthermore,
elements that are subparts of other elements are often referred to as
subelements. There is no structural distinction between nodes,

XML

Crash Course

@

Need a crash course in XML?

elements and subelements; rather, the different terminology is
intended to describe the hierarchical relationships.

JDF elements are represented by two kinds of data types:
element and text element. The latter is abbreviated as telem. For

XML101.com provides online tutorials
that non-programmers can easily follow.
The site includes examples. See
http://xmI101.com/

more information about elements, see Section 3.1.2 Fundamental
JDF Attributes and Elements.

2.1.1.3 Attributes

An attribute is an XML syntactic construct. (See also: elements.) Within this document, the term refers to
characteristics of elements, a subpart of a node. For instance, each node has an /D attribute that contains a unique
identifier. Attributes contain parameters of different data types, such as string, enumeration, and dateTime.

For more information about attributes, see Section 3.1.2 Fundamental JDF Attributes and Elements. Note that an
attribute with an empty (zero length) value string is illegal except when the attribute value is defined as an arbitrary string.

2.1.1.4 Relationships
The hierarchical JDF structure implies relationships between nodes and elements within a JDF tree structure. The
terms used in this document to describe these relationships are defined below, and, in some cases, include a brief
representation of the encoding that would express them.
e Parent: An element that directly contains a child element.
<Parent><Child/></Parent>
e Child: An element that resides directly in the parent element.

Page 11

Page 12

e Sibling: An element that resides in the same parent element as another child element.
<Any><Sibling/><Sibling/></Any>
e Descendent: An element that is a child or a child of a child, etc.
e Ancestor: An element that is a parent or a parent’s parent, etc.
<Ancestor>
<Any>
<Descendent/>
<MoreAnys>
<Descendent/>
</MoreAnys>
</Any>
</Ancestor>
e Root: The single element that contains all other elements as descendents.
e Leaf: Node without further children.
e Branch: An intermediate node in a hierarchy that contains at least one child node. A branch is never a leaf.

2.1.1.5 Links

There are two kinds of links in JDF: internal links and external links. Internal links are pointers to information that
is located elsewhere in a JDF document. The data that is referenced by the link is located in a target element.
External links are used to reference objects that are outside of the JDF document itself, such as content files or color
profiles. These objects are linked using standard URLs (Uniform Resource Locators).

JDF makes extensive use of links in order to reuse information that is relevant in more than one context of the
job. The same target may be referenced by multiple links. However, no link references more than one target.

2.1.2 Workflow Component Roles

The four components required to create, modify, route, interpret and execute a JDF job are known as agents,
controllers, devices and machines. Overseeing the workflow created by these components is MIS, or Management
Information Systems. These five aspects of a JDF workflow are described in the sections that follow.

By defining these terms, this specification does not intend to dictate to manufacturers how a JDF/JMF system
should be designed, built, or implemented. The intention is to name the component mechanisms required for the
interaction of actual components in a workflow during the course of a JDF job. In practice, it is very likely that
individual system components will include a mixture of the capabilities described in the following sections. For
example, many controllers are also agents.

2.1.2.1 Machines

A machine is any part of the workflow system designed to execute a process.

Most often, this term refers to a piece of physical equipment, such as a press

. . Agents,
or a binder, but it can also refer to the software components used to run a c ont?’ ollers &
particular machine. =~ Computerized workstations, whether run through Devices

automated batch files or whether controlled by a human worker, are also
considered machines if they have no JDF interface.

) “Agents,” “Controllers,” and
2.1.2.2 Devices “Devices” are special, logical
The most basic function of a device is to execute the information specified | descriptions. You probably

by an agent and routed by a controller. Devices must be able to execute
JDF nodes and initiate machines that can perform the physical execution.
The communication between machines and devices is not defined in this
specification. Devices may, however, support JMF messaging in order to
interact dynamically with controllers.

2.1.2.3 Agents

Agents in a JDF workflow are responsible for writing JDF. An agent has the
ability to create a job, to add nodes to an existing job, and to modify existing
nodes. Agents may be software processes, automated tools, or even text
editors. Anything that can be used in composing JDF can be considered an

Page 12

won’t ever buy one. An agent
(writes and reads JDF) may be
any software tool that can parse
JDF. Controllers communicate
instructions that devices act
upon. They are functions that
may be embedded into your
software, production equipment,
or MIS systems.

Page 13

agent.

Actual implementations of devices or controllers will most often be able to modify JDF. These system components
have agent properties in the terms of this specification.

2.1.2.4 Controllers

Agents create and modify JDF information; controllers route it to the appropriate devices. The minimum
requirement of a controller is that it can initiate processes on at least one device, or at least one other slave
controller that will then initiate processes on a device. In other words, a controller is not a controller if it has
nothing to control. In some cases, a pyramid-like hierarchy of controllers can be built, with controllers at the top of
the pyramid controlling a series of lower-level controllers at the bottom. The lowest-level controllers in the
pyramid, however, must have device capability. Therefore, controllers must be able to work in collaboration with
other controllers. In order to communicate with one another, and to communicate with devices, controllers must
support the JDF file-exchange protocol and may support JMF. Controllers can also determine process planning and

scheduling data, such as process times and planned production amounts.

2.1.2.5 Management Information Systems—MIS
The overseer of the relationships between all of the units in a
workflow is known as Management Information Systems, or
MIS. MIS is, in effect, a macrocosmic controller. It is
responsible for dictating and monitoring the execution of all of
the diverse aspects of the workflow. To do this, it must remain in
contact with the actual production facilities. This can be
accomplished either in real time using JMF messaging or post-
facto using the audit records within JDF.

To allow MIS to communicate effectively with the other
workflow components, JDF supplies what is essentially a
messenger service, in the form of JMF, to run between MIS and
production. This format is equipped with a variety of message
types, ranging from simple, unidirectional notification to queries
and even commands. System designers have a great deal of
flexibility in terms of how they choose to use the messaging
architecture, so that they can tailor the processes to the
capabilities of the existing workflow mechanism. Figure 2.1
depicts how various communication threads can run between
MIS and production.

JDF also provides system components the ability to collect
performance data for each node, which can then be passed on to a
job-tracking system for use by the MIS system. These data may
be derived from the messages that the controller receives or from
the audit records in the job (for more information on audits, see
Section 3.10.1 Audit Elements). Alternatively, the completed job
may be passed to the job accounting system, which examines the
audit records to determine the costs of all the processes in the job.

2.1.2.6 System Interaction

>

Automating

Data Flows

A JDF-enabled workflow may require a
tremendous amount of information. This
could seem daunting to anyone who
expects to have to enter information into
a system, but it need not be the case.
From the style information in a layout
file, to automatically generated image
file header information, to the color
profiles tagged onto images
automatically by digital cameras or
image editing systems, a great deal of
information can be captured and passed
along from one JDF-enabled application
to another. Furthermore, where, in the
specification, there are many options,
those options can be set to a default
that represents your particular plant or
workflow. For instance, JDF provides a
variety of staple folds. If your plant only
supports a crown fold, that becomes the
default in your JDF-enabled system and
is never manually specified or keyed.

An example of the interaction and hierarchical structure of the components considered in the preceding sections is
shown in the following figure. Single arrows indicate uni-directional communication channels and double arrows

indicate bi-directional communication.

Page 13

Page 14

Controller/Agent
(controller with agent properties)

WL | KA

Controller/ Controller/ : ;
Agent 1 Agent 2 Device 1 Device 2
L
[LL [T L g
o = (o] = =
= = = =]
iz
Device 1.1 Controller/Agent 2.1
o]
-2 e
Device/Agent 2.1.1 Device 2.1.2

Figure 2.1 Example of JDF and JMF workflow interactions

2.2 JDF Workflow

JDF does not dictate that a workflow be constructed in any prespecified way for it to be usable. On the contrary, its
flexibility has allowed JDF to model existing custom solutions for the graphic arts, as well as those yet to be
imagined. JDF is equally as effective with a simple system using a single controller-agent and device as it is with a
completely automated industrial press workflow with integrated pre- and postpress operations.

Because of workflow system construction in today’s industry, the principal subsection procedures of a printing
job—prepress, press, and postpress—remain largely disconnected from one another. JDF provides a solution for
this lack of unity. With JDF, a print job becomes an interconnected workflow that runs from job submission through
trapping, RIP’ing, filmmaking, platemaking, inking, printing, cutting, binding, and sometimes even through
shipping. JDF enables an architecture that defines the process necessary to produce each intended result and
identifies the elements necessary to complete the processes. All processes are separated into nodes, and the entire
job is represented by a tree of these nodes. All of the nodes taken together represent a desired printed product.

Each individual node in JDF is defined in terms of inputs and outputs. The inputs for a node consist of the
resources it uses and the parameters that control it. For example, the inputs in a node describing the process
parameters for imaging the cover of a brochure might include requirements for trapping, RIP’ing, and imposing the
image. The output of such a node might be a raster image.

Unless they represent the absolutely final product, resources that are produced by one node are in turn modified or
consumed by subsequent nodes. Therefore, the output of the process described above—the raster image—becomes one
of the input resources for a node describing the printing process for the brochure. This input resource would be joined
in the node by other input resources such as inks, press sheets, plates, and a set of parameters that indicate how many
sheets should be produced. The output would be a set of printed press sheets that in turn would become the input
resource for postpress operations such as folding and cutting. And so on until the brochure is completed.

Page 14

Page 15

This system of interlinked nodes effectively unites the prepress, press, and postpress processes, and even extends the
notion of where a job begins. A JDF job, like any printing job, is defined by the original intent for the end product.
The difference between a JDF job and a generic printing job, however, is that JDF allows the entire job, from
prepress through postpress, to be defined up front. All of the resources and processes necessary to produce an entire
printed product can be identified and organized into nodes before the first prepress process is set in motion.
Furthermore, the product intent specification can be extremely broad or extremely detailed, or anywhere in between.
This means that a job may be so well defined before production begins that the system administrator only has to set
the wheels in motion and let the job run its course. It may also mean that the person submitting the job has only a
general idea of what the final product will look like and that modifications to the intent will be made along the way,
depending on the course of the job.

For example, the person submitting the job specification for the brochure described above may know that she
wants 400 copies, that she wants it done on a four-color press with no spot colors, that the cover will be on a
particular paper stock and the contents on another, that the binding will be stapled, and that she requires the job in
two weeks. Another person might know only that he wants the pages she’s designed to be put into some sort of
brochure form, although she doesn’t know exactly what. Either person’s request can be translated into a JDF
product intent node that will eventually branch into a tree structure describing each process required to complete the
brochure. In the first example, the prepress, press, and postpress processes will be well defined from the start. In
the second example, information will be included as it is gathered. The following sections describe the way in which
nodes can combine to form a job.

2.2.1 Job Structure

JDF jobs consist of a set of nodes that specify the production steps needed to create the desired end product. The
nodes, in addition to being connected through inputs and outputs, are arranged in a hierarchical tree structure.
Figure 2.2, below, shows a simple example of a tree of nodes.

Product nodes

Process group nodes

GE3S dob o\

Individual Process nodes

Figure 2.2 JDF tree structure

The following table provides a hypothetical breakdown of the nodes in the tree structure shown above:
Table 2-1 Information contained in JDF nodes, arranged numerically

Node # Meaning

1 Entire book

2 Cover

3 Contents

4 Production of cover

5 Production of all color pages

Page 15

Page 16

Node # Meaning

6 Production of all black-and-white pages
7 Cover production process 1

8 Cover production process 2

9 Cover production process 3

10 Cover Finishing process

11 RIP’ing for color pages

12 Plate making for color pages

13 Printing for color pages

14 Color page finishing process

15 RIP’ing for black-and-white pages

16 Printing for black-and-white pages on a digital press
17 Binding process for entire book

The uppermost nodes (1, 2, & 3) represent the product intent in general terms. These nodes describe the desired end
product and the components of that product, which, in this case, are the cover and the content pages. As the tree
branches, the information contained within the nodes gets more specific. Each subnode defines a component of the
product that has a unique set of characteristic, such as different media, different physical size, or different color
requirements. The nodes that occur in the middle of the tree (4, 5, & 6) represent the groups of processes needed to
produce each component of the product. The nodes that occur closest to the bottom of the tree (7 — 17) each
represent individual processes.

In this example, there are two subcomponents of the job, the cover and the contents, each with distinct
requirements. Therefore, two nodes—nodes 2 and 3—are required to describe the elements of the job in broad
terms. Within the content pages there are some black-and-white pages and some color pages. Since fabricating
each requires a different set of processes, further branching is necessary. The following table arranges the nodes in
groups according to the processes they will be executing:

Table 2-2 Information contained in JDF nodes, arranged by group

| Entire book | 1 | Entire book |
Process Group Node# | Meaning
17 Assemble book
Cover 2 Cover
4 Cover assembly processes
7 Cover production process 1
8 Cover production process 2
9 Cover production process 3
10 Finishing process for cover
Contents 3 Contents
Color Pages 5 Production of all color pages
11 RIP’ing for color pages
12 Plate making for color pages
13 Printing for color pages
14 Color page finishing
Black-and-white pages 6 Production of all black-and-white pages

15 RIP’ing for black-and-white pages

Page 16

Page 17

| |16

| Printing for black-and-white pages on a digital press |

This hierarchical structure is discussed in more detail in the following section.

2.3 Hierarchical Tree Structure an

Output resources of JDF nodes are often the input resources for

d Networks in JDF

other JDF nodes. Many nodes cannot begin executing until all
of their resources are complete and ready. This means that the
nodes execute in a well defined sequence. One process follows
the next. For example, a process for making plates will
produce, as output resources, press plates that are required by a
printing process.

In the hierarchical organization of a JDF job, nodes that
occur higher in the tree represent high level, more abstract
operations, while lower nodes represent more detailed process
operations. More specifically, nodes near the top of the tree
may represent only intent regarding the components or
assemblies that make up the product, while the leaf nodes

provide explicit instructions to a device to perform some

Trees & Nodes

In the real world, if you wanted to scan a photo,
you would probably go to the prepress
department to find a scanner. JDF uses this
same common-sense approach to organization.
Processes (nodes) are organized into a
hierarchy (tree). Consider your own operations.
If you were to group your departments,
equipment, and processes into an “org chart,”
what would it look like?

operation. Figure 2.3 shows an example of a hierarchical structure.

Parent JDF

Node

N O
w o

~ U

Figure 2.3 Example of a hierarchical tree structure of JDF nodes

In addition to the hierarchical structure of the node tree, sibling nodes are linked in a process chain by their
respective resources. In other words, an output resource of one node ends up representing the input resource of the
following node (as represented in Figure 2.4). This interrelationship is known as resource linking.

With resource linking, complex networks of processes

can be formed. Figure 2.4 displays an alternate

representation of the process described in Figure 2.3. Whereas Figure 2.3 represents a hierarchical structure, Figure

2.4 shows an example of the linking mechanism of the same job.

networks that map to the same node hierarchy.

Page 17

Note that there are many possible process

Page 18

A 4
N T
@

-

g

W - ~

—

5 FRD (RS)
Key: : 6 |
“P” = Process IPA I
“R” = Resource l_(NOde consisting of process P4, P5, & P6) I
__________ -

Figure 2.4 Example of a process chain linked by input and output resources

In JDF, the linking of processes is not explicitly specified. In other words, nodes are not arranged in an abstract
chronology, dictating, for example, that the trapping node must come before the RIP’ing node. Rather, the links are
implicitly defined in the exchange of inputs and outputs. Resource dependencies form a network of processes, and
the sequence of process execution—that is, the routing of processes—can be derived from these dependencies. One
resource dependency might have the possibility of multiple process routing scenarios. It is up to MIS to define the
proper solution to meet local constraints.

The agent or set of agents employed by MIS to write the JDF job must be familiar with these local constraints.
They must take into account factors such as the control abilities of the applications that complete the prepress
processes, the transport distance between the prepress facility and the press itself, the load capabilities of the press,
and the time requirements for the job. All of the factors taken together build a process network representing the
workflow of production. To aid agents in defining the workflow, JDF provides the following four different and
fundamental types of process routing mechanisms, which may be combined in any way:

1. Serial processing that is subsequent production and consumption of resources as a whole, represented by a
simple process chain.

2. Overlapping processing that is simultaneous production and consumption of resources by pipes.

3. Parallel processing that involves the splitting and sharing of resources.

4. Tterative processing that is a circular or back and forward processing for developing resources by repeated activity.
These mechanisms are discussed in greater detail in Section 4.3 Execution Model.

2.4 Role of Messaging in JDF

JDF provides a container to define a job. Messaging language in JMF, defined in Chapter 5, provides a method to
generate snapshots of job status and to interactively manipulate elements of a workflow system.

JMF is specifically designed for communication between the production system controller and the work centers
or devices with which it interacts. It provides a series of queries and commands to check the status of processes and,
in some cases, to dictate the next course of action. For example, the KnownDevices query allows the controller to
determine what processes can be executed by a particular device or workcenter. These processes are likely to be
determined at system initialization time. The SubmitQueueEntry messages [RP47]provide a means for the
controller to submit a job ticket to individual work centers or devices. And the Status, Resource and Occupation
messages allow the device or work center to communicate quasi real-time' processing status to a controller.
Depending on the system configuration, the message handler may choose to record status changes in the history
logs. The status message allows the controller to request status updates from the controller.

JDF also provides mechanisms to define recipients for individual messages on a node-by-node basis. This
enables controllers to define the aspects and the parts of jobs that they want to track. For more information about
messaging, see Chapter 5 JDF Messaging with the Job Messaging Format.

! Real-time is the time-scale typically associated with macro-cosmic production control systems. JMF is not
intended for real-time, lower level machine control.

Page 18

Page 19

2.5 Coordinate Systems in JDF

This chapter explains how coordinate systems are defined and used in JDF. It also shows how the matrices are used
to specify a certain transformation and how these matrices can be used to transform coordinates from one coordinate
system to another coordinate system. In addition it clarifies the meaning of terms like Top or Left.

2.5.1 Introduction

During the production of a printed product it often happens that one object is placed onto another object. During
imposition, for example, single pages and marks (like cut, fold, or register marks) are placed on a sheet surface.
Later, at image setting, a bitmap containing one separation of a sheet surface is imposed on a piece of film. In a
following step, the film is copied to a printing plate, which then is mounted on a press. In postpress, the printed
sheets are gathered on a pile. The objects involved in all these operations have a certain orientation and size when
they are put together. In addition one has to know where to place one object on the other.

The position of an object, e.g., a cut mark, on a plane can be specified by a two-dimensional coordinate. Every
digital or physical resource has its own coordinate system. The origin of each coordinate system is located in the lower
left corner, i.e., the X coordinate increases from left to the right and the Y coordinate increases from bottom to top.

Origin

Figure 2.5 Standard coordinate system

Each page contained in a PDL file has its own coordinate system. In the same way a piece of film or a sheet of paper
has a coordinate system. Within JDF each of these coordinate systems is called resource coordinate system.

If a process has more than one input resources with a coordinate system, it is necessary to define the relation
between these input coordinate systems. Therefore, a [RP48]process coordinate system is defined for each process.
JDF tickets are written assuming an idealized Device that is defined in the process coordinate system for each
process that the Device implements. A real Device must map the idealized process coordinate system to its own
device coordinate system. [RP49]

The coordinate systems of the input resources are mapped to the process coordinate system. Each of those
mappings is defined by a transformation matrix, which specifies how a coordinate (or position) of the input
coordinate system is transformed into a coordinate of the target coordinate system. See Section 2.5.6 Homogeneous

resource coordinate system resource coordinate system resource coordinate system
of input resource 1 of input resource 2 of input resource n
ResourceLink: Transformation ResourceLink: Transformation ResourceLink:Transformation
A A A

process coordinate system

identity transformation identity transformation identity transformation
A A A
resource coordinate system resource coordinate system resource coordinate system
of output resource 1 of output resource 2 of output resource n

Coordinates for mathematical background information. In the same way the mapping from the process coordinate
system to the coordinate systems of the output resources is defined. The process coordinate system is also used to
defined the meaning of terms like Top or Left, which are used as values for parameters in some processes.

Page 19

Page 20

Figure 2.6. Relation between resource and process coordinate systems

It is important that no implicit transformations, e.g. rotations, [RP50Jare assumed if the dimensions of the input
resources of a process do not match each other. Instead every transformation (e.g., a rotation) must be specified
explicitly by using the Orientation or Transformation attribute of the corresponding ResourceLink. The same
applies also to other areas in JDF, e.g., the LayoutPreparation process. A ##ref FitPolicy element may define a
policy for implied transformations.[RP51]

2.5.2 How and Where Coordinates and Transformations Are Used/Defined in JDF
The following data types are used for the specification of coordinates and transformation:
e XYPair “612 7927

e Number “20.77

e Rectangle “0 0 595 843 (Order of elements is “lower-left x, lower-left y, upper-right x, upper-right
v or “left, bottom, right, top”.)

e Matrix “1 001 30.0 235.3” (The ordering of elements is defined in 2.5.6 Homogeneous

Coordinates)
e Named orientations “Rotatel80” or “’Flip90”
Coordinates and transformations are used throughout JDF, to include:

Intent Resources, such as:

e Layoutlntent specifies size of finished product
e Medialntent specifies size of media
e Insertinglntent specifies rotation and offset

Process Resources, such as:

e Component specifies coordinate system
e CutBlock specifies cut block coordinate system
e FoldingParams specifies folding operations

2.5.3 Coordinate Systems of Resources and Processes

Each physical input Resource, e.g., Component of a process has, by default, its own coordinate system, which is
called [RP52]resource coordinate system. The coordinate system also implies a specific orientation of that
Resource. On the other hand there is a coordinate system that is used to define various process-specific
parameters. This coordinate system is called [RP53]process coordinate system.

2.5.3.1 Resource Coordinate Systems
The resource coordinate system is defined...

2,5.3.1.1 Layout Coordinate System
Effects of mirroring, e.g. plates.
Interaction of PDL CS and Layout CS, e.g. FitPolicy, SizePolicy[RP54]

2.5.3.1.2 Component Coordinate System

The descriptions of Component-specific attributes use some terms whose meaning depends on the culture in which
they are used. For example, different cultures mean different things when they refer to the “front” side of a magazine.
Other terms, such as binding, are defined by the production process and therefore do not depend on the culture.
Whenever possible, this specification endeavors to use culture-independent terms. In cases where this is not

Page 20

Page 21

possible, Western style (left-to-right and top-to-bottom writing) is assumed. Please note that these terms may have a
different meaning in other cultures (such as those writing from right to left).

Binding edge
(spine)
Product top }‘
Binding edge
(spine) "\ F /-Product front edge |
Product front
Product front —// o
\—Product bottom Product front edge
Book-like product viewed from first page (front side) Calendar-like product viewed from first page (front side)

Figure 2.7 Terms and definitions for components

Components w.o. Binding Edge
Inherit from Layout
Component with Binding Edge
Spine defines left edge?

Corner Staple defines top left ?
CS of Bundles[RP55]

2.5.3.1.3 ExposedMedia Coordinate System
Plates

2.5.3.1.4 Media Coordinate System
Landscape vs. Portrait
Preprinted, prepunched- Front assume single sided preprint=front

2.5.3.2 Process Coordinate Systems

The process coordinate system is defined...

Stress IDEALIZED vs Device CS.

Rotation of 2 input resources (e.g. Media and Layout)

Linear (straight through) coordinat systems

Default rotation from short to long edge? IPP defines 90 deg counterclockwise rotation from portrait to landscape.
RefereceEdge in Folding

Folding output? -

Binding Output — “Mother Component” defines CS

2.5.3.3 Coordinate Systems in Combined processes

The default coordinate systems for Combined processes are defined to be identical to the coordinate system of a
ProcessGroup node that links each individual process with no Orientation or Transformation specified for any of the
exchange resources. Thus the process coordinate system within a combined process is identical to the idealized process
coordinate system of the individual process step.

The coordinate system transformation of exchange resources is specified with a ResourceLink to the exchange
resource that has a Usage="Intermediate”. One important consequence of this description is that the Orientation or
Transformation of the original input ResourceLink does NOT implicitly apply to the second and further combined
process steps. If the orientation is expected to be identical in all combined process steps, the process must explicitly
specify the Orientation or Transformation of the intermediate components.

Effects of CTMs in inputs on the Reference edge.
e Add “Intermediate” resource links that define reference edge for combined process worksteps.

Page 21

Page 22

o define mapping of reference edge to orientation.

2.5.3.4 Coordinate System Transformations

It is often necessary to change the orientation of an input Resource before executing the operation. This can
be done by specifying a transformation matrix. It is stored in the Orientation or Transformation attribute of the
ResourcelLink. This provides the ability to specify different matrices for the individual resources of a process.

The following table shows some matrices that can be used to change the orientation of a physical Resource.
Most of the transformations require the X- (w) and the Y-dimension (h) of the Component as specified in the
Dimension element. If these are unknown, it is still possible to define a general orientation in the Orientation
attribute of the ResourceLink. The naming of the attribute values indicates the number of degrees of rotation in
counterclockwise direction and the ‘Flip’ names indicate a subsequent flip round the X-axis. Thus Rotate90 and
Flip90 specify that the original Y axis as represented by the spine is on top. In the case of Flip90, the Component
is additionally flipped front to back around the X-axis. An additional translation is applied in some cases to insure
that both source and target coordinate systems have the origin in the lower left corner. The following table displays
the orientation examples that result in a target in upright, face up position[RP56]

Page 22

Orientation Name

Page 23

Table 2-3 Matrices and names used to describe the orientation of a Component

Source Transformation Matrix Target

Rotate(

Coordinate System According Action Coordinate System

100100

F No Action F

Rotatel80

-1 00 -1 wh

4 180° Rotation F

Rotate90

’ 01 -10h0O0
Tl X 90° Counterclockwise F

Rotation ‘

Rotate270

' 01100 w

LL 270° Counterlockwise F
[RP57]Rotation

Flip180

N 1001 wo

180° Rotation + «

Flip around X[RP58]

Flip0

100 -1 0 h
8 Flip around X[RP59] F

Flip270

’ 011000

Qo 270° Counterclockwise F
Rotation + Flip around
X[RP60]

Flip90

' 0-1-10hw -

o & 90° CounterClockwise F

Rotation + Flip around
X[RP61]

Page 23

Page 24

2.5.4 Product Example: Simple Brochure

To illustrate the use of coordinate systems in JDF, a simple saddle stitched brochure with eight pages is used as an
example. The brochure is printed on two sheets with front and back. The two sheets are then folded, collected on a
saddle, and saddle stitched. Finally the brochure is cut with a three-side trimmer. The following table lists the JDF
processes used for the production of the simple brochure.

Input Resources Process Output Resources
Layout Imposition RunList
RunList (Document)
RunList (Marks)
RunList Interpreting RunList(InterpretedPDLData)
RunList(InterpretedPDLData) Rendering RunList (rasterized ByteMaps)
Media
RenderingParams
RunList (rasterized ByteMaps) Screening RunList (Bitmaps)
ImageSetterParams ImageSetting (to Film) ExposedMedia (Film)

Media (Film)
RunList (Bitmaps)

ExposedMedia (Film) ContactCopying ExposedMedia (Plate)
ExposedMedia (Plate) ConventionalPrinting Component [RP62]
ConventionalPrintingParams

FoldingParams Folding Component
Component

CollectingParams Collecting Component
Component

SaddleStitchingParams SaddleStitching Component
Component

TrimmingParams Trimming Component
Component

At imposition, the layout describes a signature with two sheets, each having a front and a back surface. On each
surface, two content objects, i.e., pages, are placed.

Sheet 1, Front Sheet 1, Back Sheet 2, Front Sheet 2, Back

8 1 2 7 6 3 4 5

Figure 2.8 Layout of simple saddle stitched brochure (product example)

Each surface has its own coordinate system, in which a surface contents box is defined. This coordinate system is
also referred to as the Layout coordinate system because the Surface, Sheet, and Signature elements are
defined within the hierarchy of the Layout resource. The content objects are placed by specifying the CTM
attribute relative to the surface contents box. If the position of an object within a page is given in the page coordinate
system, this coordinate can be transformed into a position within the surface coordinate system:

P P x CTM + [SurfaceContentsBoxXloWerleft SurfaceContentsBoX v, crien 0]

Surface Page Page

Page 24

Page 25

Please note, that the width and height of the surface are not known at this point.
Y

—— Content object (page 1)
Surface contents box
/ Surface
817 7

Origin
\ \\X— Content object (page 8)

Figure 2.9 Surface coordinate system

The sheet coordinate system is identical with the coordinate system of the front surface. This means that no
transformation is needed to convert a coordinate from one system to the other. Instead, the coordinates are valid (and
equal) in both coordinate systems. The relation between the coordinate system of the front and the back surfaces
depends on the value of the Sheet:LockOrigins attribute. The sheet coordinate system is also identical with the
signature coordinate system, which in turn is identical with the coordinate system of the imposition process.

The output resource of the imposition process is a run list. Each element of the run list has its own coordinate

system, which is identical with the corresponding signature coordinate system. The interpretation, rendering and
screening processes do not affect the coordinate systems. This means that the coordinate systems of all these
processes are identical.
At the image setting process, the digital data is set onto film. The process coordinate system is defined by the media
input resource. The width and height of the media are defined in the Media:Dimension attribute. The position of
the signatures (as defined by the run list input resource) on the film is defined by the
ImageSetterParams:CenterAcross attribute.

The coordinate system of the conventional and digital printing process is called press coordinate system. It is
defined by the press: the X-axis is parallel to the press cylinder, and the Y-axis is going along the paper travel. Y =0
is at begin of print, X = 0 is at the left edge of the maximum print area. The Front side of the press sheet faces up —
towards the positive Z-axis.

The relation between the layout coordinate system and the press coordinate system is defined by the CTM
attributes of the corresponding TransferCurveSet elements located in the TransferCurvePool.

orthogonal to cylinder axis

maximum print area

direction of
paper travel

begin of print —p

Page 25

Page 26

Figure 2.10. Press coordinate system used for sheet-fed printing[RP63]

ribbon

orthogonal to cylinder axis

reel width

Q
<
maximum print area of g_‘
one single impression [0)
(=}
I3
=
f ot 3
direction of =
web travel 3
3
w X
begin of print —p» \ 4

Figure 2.11 Press coordinate system used for web printing

The output of the printing process, e.g., a pile of printed sheets, is described as a Component resource in JDF. The
coordinate system of the printed sheets is defined by the transformation given in the TransferCurveSet:CTM
attribute (where Name = Paper).

Each of the two sheets is folded in a separate folding process. In this example, the orientation of the sheets is
not changed before folding. This can be specified by setting the Orientation attribute of the input resource to
Rotate(or by setting the Transformation attribute to “1 0 0 1 0 0”. The folding process changes the coordinate
system. In this example the origin of the coordinate system is moved from the lower left corner of the flat sheet
(input) to the lower left corner of the folded sheet (output), i.e., it is moved to the right by half of the sheet width.

Y A Sheet 1 Y A Sheet 2

Figure 2.12 Coordinate systems after Folding (product example)

The two folded sheets are now collected. In this example, the orientation of the folded sheets is not changed before
collecting. This can be specified by setting the Orientation attribute of the input resource to Rotate() or by setting
the Transformation attribute to “1 0 0 1 0 0”. The collecting process does not change the coordinate system.

.....................

Page 26

Page 27

Figure 2.13 Coordinate systems after Collecting (product example)

The two collected and folded sheets are now trimmed to the final size of the simple brochure. In this example, the
orientation of the collected and folded sheets is not changed before trimming. This can be specified by setting the
Orientation attribute of the input resource to Rotate0 or by setting the Transformation attribute to “1 0 0 1 0 0”. The
trimming process changes the coordinate system: the origin is moved to the lower left corner of the trimmed product.

In looking at the whole production process, a series of coordinate systems is being involved. The relation between
the separate coordinate systems is specified by transformation matrices. This allows transformation of a coordinate
from one coordinate system to another coordinate system. As an example, note the position of the title on page 1 of the
product example in Figure 2.13. By applying the first transformation, this position can be converted into a position of
the surface (or layout) coordinate system. This position can then be converted into the paper coordinate system by
applying (in this order) the Film, Plate, Press, and Paper transformations stored in the TransferCurvePool.

From now on, every process is using components as input and output resources. The resource link of each input
and output component contains a Transformation attribute or an Orientation attribute. The Transformation
attribute may be [RP64]Jused if the width and the height of the component are known or a non-orthogonal rotation is
required[RP65]. Otherwise the Orientation attribute must be used to specify a change of the orientation, e.g., an
orthogonal[RP66] rotation.

Since the folding process changes the coordinate system depending on the fold type, the transformations
specified in the resource links are not sufficient to transform a position given in the paper coordinate system to a
position in the coordinate system of the folded sheets, i.e. the resource coordinate system of the output component of
the folding process. An additional transformation depending on the fold type and details of the individual folds
[RP67]has to be applied. The corresponding transformation matrix is not explicitly specified[RP68] in the JDF file.

The collecting process does not change the coordinate system. Therefore, only the transformations specified in
the resource links of the input and output resources, i.e. components, have to be applied.

The trimming process again changes the coordinate system depending on the trimming parameters. Therefore, a
transformation depending on the trimming parameters has to be applied in addition to the transformations specified
in the resource links. The matrix for the additional transformation (depending on the trimming parameters) is not
explicitly specified[RP69] in the JDF file.

After having applied all transformations mentioned above, the resulting coordinate specifies the position of the
title in the coordinate system of the final product.

Page 27

Page 28

page coordinate system
= resource coordinate system of input component

Surface:SurfaceContentsBox and CTMpage

surface coordinate system = layout coordinate system
= process coordinate system of Imposition, Interpreting, Rendering,

TransferCurveSet:CTM (Name = Film)

film coordinate system

= irocess coordinate sistem of ImageSetting. EDIEGGNGHOICONNISIGISION

TransferCurveSet:CTM (Name = Plate)

plate coordinate system
= irocess coordinate sistem of ContactCopying. [EBIEGGNGHOICONNE

TransferCurveSet:CTM (Name = Press)

A

press coordinate system
= process coordinate system of ConventionalPrinting

TransferCurveSet:CTM (Name = Paper)

paper coordinate system
= resource coordinate system of output component of ConventionalPrinting
= resource coordinate system of input component of Folding

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Folding

Transformation according type of fold and
ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Folding
= resource coordinate system of input component of Collecting

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Collecting

ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting
= resource coordinate system of input component of Trimming

ResourceLink:Transformation (or ResourceLink:Orientation)

process coordinate system of Trimming

Transformation according trimming parameters and
ResourceLink:Transformation (or ResourceLink:Orientation)

resource coordinate system of output component of Collecting
= coordinate system of final product

Figure 2.6 Examples of Transformations and Coordinate Systems in JDF.[RP70]

2.5.5 General Rules

The following rules summarize the use of coordinate systems in JDF:
e Every individual piece of material (film, plate, paper) has a resource coordinate system.

e Every process has a process coordinate system.

Page 28

Page 29

o Terms like fop, left, etc., are used with respect to the process coordinate system in which they are used and are
independent of orientation, i.e., landscape or portrait, and the human reading direction.

e The coordinate system of each input component is mapped to the process coordinate system.
e The coordinate system may change during processing, e.g., in Folding.

e The description of a product in JDF is independent of particular machines used to produce this product. When
creating setup information for an individual machine, it might be necessary to compensate for certain machine
characteristics. At printing, for example, it might be necessary to rotate a landscape job, because the printing
width of the press is not large enough to run the job without rotation.

2.5.6 Homogeneous Coordinates

A convenient way to calculate coordinate transformations in a two-dimensional space is by using so-called
homogeneous coordinates. With this concept, a two-dimensional coordinate P=(x,y) is expressed in vector form as
[x y 1]. The third element “1” is added to allow the vector being multiplied with a transformation matrix describing
scaling, rotation, and translation in one shot. Although this only requires a 2*3 matrix (as it is used in PostScript for
example), in practice 3*3 matrices are much more common, because they can be concatenated very easily. Thus, the
third column is set to “0 0 1”.

a b 0
Tef = |c d O would in JDF be written as “abcde
e f 1

Some often used transformation matrices are

1.0 0
Tef = (0 1 0 identity transformation
10 0 1
10 0
Tef =0 1 0 translation by dx, dy
|dx dy 1
[cos @ sing 0
Trf = |- sin ¢ cos ¢ 0| rotation by @ degrees counter-clockwise
0 0 1

Transforming a point
In this example, the position P given in the coordinate system A is transformed to a position of coordinate system B.
The relation between the two coordinate systems is given by the transformation matrix Trf.

Page 29

Page 30

Y 4 Ya
P
Origin of
coordinate =
system A _\
Origin of
coordinate);
system B
X
Figure 2.7 Transforming a point (example)
= [30 100 1] P, =(30, 100)
= P, x Trf
I 0 0
= [30 100 1] x| 0 1 0 in JDF, Trfis written as “1 0 0 1 40 60”
40 60 1
= [70 160 1] Py =(70, 160)

Page 30

Page 31

Chapter 3 Structure of JDF Nodes and Jobs

Introduction

This chapter describes the structure of JDF nodes and how they interrelate to form a job. As described in Section
2.1.1 Job Components, a node is a construct, encoded as an XML element, that describes a particular part of a JDF
job. Each node represents an aspect of the job: 1.) in terms of a process necessary to produce the end result, such as
imposing, printing, or binding; 2.) in terms of a product that contributes to the end result, such as a brochure; or 3.)
in terms of some combination of the previous two. In short, a node describes a product or a process.

In addition to describing the structure of an individual JDF node, this chapter examines in what way those nodes
interact to form a coherent job structure. The interrelation of nodes can be divided into two categories: hierarchical
and lateral. Hierarchical interrelation is the nested structure of parent nodes that contain child nodes. The visual
correlative of this structure resembles a family tree, with a single node describing the entire job at the top, and a
number of nodes at the bottom that each describe only one specific process. JDF-supported, leaf-level processes are
described in Chapter 6 Processes.

Lateral interrelation, on the other hand, is the interrelation that occurs between nodes as a result of resource
linking. Resource linking is the result of the transformation of inputs into outputs, which in turn may become inputs
of other nodes. It also occurs when nodes share the same resource. The combination of hierarchical nesting of
nodes and lateral linking allows complex process networks to be constructed. In a very simple case, however, a JDF
file may contain only one node.

The hierarchical structure of a JDF job achieves a functional grouping of processes. For example, a job may be
split into a prepress node, a press node, and a finishing node that contain the respective process nodes. Each and
every node in turn contains attributes that represent various characteristics of that node. Nodes also contain
subelements of certain types, such as resources, process information, customer information, audits, logging
information, and other JDF nodes. Some elements, such as those that deal with customer information, generally
occur only in the root structure, while other elements, such as resources, may occur anywhere in the tree. Where the
elements can reside depends on their type and their usage scope.

This chapter describes the elements, subelements, and attributes commonly found in JDF nodes, and provides
the characteristics necessary to understand where each belongs and how it is used. Many of these characteristics are
presented in tables, and each of these tables includes the following three columns:

e Name—Identifies the element being discussed.

e Data Type—Refers to the data type, all of which are described in Section 0. Only the data types element or
telem (which is short for text element) are applied to elements. All other types are attributes.

e Description—Provides detail about the element or attribute being discussed.

The JDF workflow model is based on a resource/consumer model. JDF nodes are the consumers that are linked by
input resources and output resources. The ordering of siblings within a node, however, has no effect on the
execution of a node. All chronological and logical dependencies are specified using ResourcelLinks, which are
defined in Section 3.8 Resource Links.

Figure 3.1 is a schematic structure of the JDF node type. In this figure, generic attributes and elements (see
Section 3.1.1 Generic Contents of JDF Elements) are inserted only in the JDF root node. The element types that are
displayed in this figure are described in the subsequent sections. Abstract data types are surrounded by a dashed
line. Types derived from the abstract data type Resource are shown schematically in Figure 3.4.

Page 31

JDF

Page 32

Comment*

Part*

AncestorPool?

Activation?

ID

JobID?

JobPartIiD?

ProjectID?

SpawnID?

SettingsPolicy?

Status

Template?

Type

Types?

Version?

xmlns{:prefix]?

BestEffortExcep-

tions?

= CommentURL?

= DescriptiveName?

- MustHonorExcep-
tions?

* OperatorInterven-

tionExceptions?

T
Ancestor+ —[Customerlnfo?]
. FileName %
* NodeTD —[Nodelnfo? J
i g
— Customerlnfo? Contact” {Person? |
* BillingCode? * ContactType
* CustomerID? Address?
2 CustomerJobName?
* CustomerOrderID? ComChannel*
2 rRefs?
- Company?
— Nodelnfo?

Businessinfo?

o Duelevel?

* End? Employee?

o Route?

. rRefs?

. Start?

. TargetRoute?

. NotificationFilter* |

o
{Resourcepool?)—— Resource#* |

CatalogDetails?
CataloglID?
Class

ID

Locked?

PipelID?
ProductID?
rRefs?
SettingsPolicy?
SpawnIDs?
SpawnStatus?
Status

AmountPool?

0 CombinedProcessindex?

* CombinedProcessType?

* DraftOK?

= PipePartIDKeys?

. PipeProtocol?

= PipeURL?

. Processllsage?

= rRef

. rSubRef?

i Usage

(T T S e R
—{ AuditPool? Audit* |
L] rRefs? * Time
= Author?
r N {
— StatusPool? PartStatus™ Part
= Status? = Status?

Attributes —{JDF*)
JDF:
Type = Product | ProcessGroup | Combined | any process name
Status = Waiting | TestRunInProgress | Ready | FailedTestTun | Setup | InProgress | Cleanup | Spawned | Stopped | Completed | Aborted | Pool
Activation = Inactive | Informative | Held | TestRun | TestrunAndGo | Active
Resource:
Status = Incomplete | Unavailable | InUse | Draft | Complete | Available

SpawnStatus = NotSpwaned | SpawnedRQ | SpawnedRW
Locked= false | true ; (volatile or persistent)

ResourcelLink:
Usage = Input | Output

Figure 3.1 Structure of the JDF Node

Page 32

Page 33

3.1 JDF Nodes

JDF nodes are encoded as XML elements. Nodes, in turn, contain various attributes and further subelements,
including nested JDF nodes.

Many of the tables in this section contain a fourth column that provides further details about the valid range of
the attribute/element content, how the content is inherited by descendents (children, grandchildren, etc.), and where
the attribute/element may reside in the JDF tree. The heading for this column is “Scope,” which is short for “Scope
and Position.” The following abbreviations are defined:

D) Descendent: The content is valid locally within its node and in all descendent nodes, unless a descendent
contains an identical attribute that overrides the content.

L) Local: The content is only valid locally, within the node where the content is defined.

R) Root: The attribute may only be specified in the root node. An exception from the localization only in the
root node occurs if the spawning and merging mechanism for independent job tickets is applied as described
in Section 4.4 Spawning and Merging.

All attributes and elements listed in subsequent chapters should be considered local, unless otherwise noted.

3.1.1 Generic Contents of JDF Elements

JDF contains a set of generic structures that may occur in any element of a JDF or JMF document. Some of these
are provided as containers for human-readable comments and descriptions and are described below. Others define
the usage policy for attributes and subelements.

Table 3-1 Generic Contents of elements

Name Data Type Description

BestEffortException | NMTOKENS | The names of the attributes in this element that are to have the best effort

s? policy applied when JDF:SettingsPolicy or JDFResource: SettingsPolicy
_ is not BestEffort. A JDF Consumer must support this attribute and must

support any value of this attribute, so that an Agent can specify any
exceptions to the SettingsPolicy in a JDF instance. The job will be
processed by substituting or ignoring the attributes or attribute values that are

not supported.

BestEffortExceptions is ignored if the current value of SettingsPolicy =

BestEffort.
CommentURL ? URL URL to an external, human-readable description of the element.
DescriptiveName ? | string Human-readable descriptive name, e.g., a resource, process, or product.
MustHonorExceptio | NMTOKENS | The names of the attributes in this element that are to have the must honor
ns? policy applied when JDF:SettingsPolicy or JDFResource:SettingsPolicy
_ is not MustHonor. A JDF Consumer must support this attribute and must

support any value of this attribute, so that an Agent can specify any
exceptions to the SettingsPolicy in a JDF instance. The job will be rejected
if any of these attributes or attribute values are not supported.

MustHonorExceptions is ignored if the current value of SettingsPolicy =
MustHonor.

Page 33

Name
Operatorinterventio
nExceptions ?

Data Type
NMTOKENS

Page 34

Description

The names of the attributes in this element that are to have the operator
intervention policy applied when JDF:SettingsPolicy or

JDFResource: SettingsPolicy is not Operatorintervention. A JDF
Consumer must support this attribute and must support any value of this
attribute, so that an Agent can specify any exceptions to the SettingsPolicy
in a JDF instance. The job will be paused and the operator will be queried if
any of these attributes or attribute values are not supported. If a device has no
operator intervention capabilities, Operatorintervention is treated as
MustHonor.

OperatorinterventionExceptions is ignored if the current value of
SettingsPolicy = Operatorintervention.

SettingsPolicy ?

enumeration

The policy for this element indicates what happens when unsupported
settings, i.e., subelements, attributes or attribute values, are present in the
resources. A JDF Consumer must support this attribute and all of the
defined values so that an Agent can depend on the JDF Consumer following
the policy requested by the Agent in a JDF instance.

Possible values are:

BestEffort — Substitute or ignore unsupported attributes, attribute values,
default attribute values, or elements and continue processing the job.

MustHonor — Reject the job when (1) any unsupported attributes, attribute
values, or elements are present or (2) any omitted attributes have an
unsupported default value defined in this specification.

Operatorintervention — Pause job and query the operator when (1) any
unsupported attributes, attribute values, or elements are present or (2) any
omitted attributes have an unsupported default value defined in this
specification. If a device has no operator intervention capabilities,
OperatorlIntervention is treated as MustHonor.

If not specified, SettinsPolicy is inherited from the parent element.[RP71]

Comment *

Telem

Any human-readable text. The Comment element is different from an XML
comment <!-- XML Comment -->. The JDF comment is meant for display in
a user interface whereas the XML comment is used to add developers
comments to the underlying XML.

The comment fields may contain a language attribute to support internationalization.

Name Data Type
Attribute ? NMTOKEN

Table 3-2 Contents of the Comment element

Description
Name of the attribute in this element that the comment refers to. The name should
include the prefix, if the attribute is in a non-JDF namespace.

Box ? rectangle

The rectangle that is associated with the comment. The coordinate system of the
rectangle is the same as the coordinate system defined in the Path attribute.

Language ? | language

Possible values are defined in [IETF RFC 1766.
If none is specified, the system specified value is assumed.

Page 34

Page 35

Name ? NMTOKEN | A name that defines the usage of a comment. For example, it may determine whether
two comments should fill two distinct fields of a user interface. Predefined values
include:

Description — Human readable description, which is required if the Comment
element is required in a given context, as is the case in the Notification element (see
Table 3-32 Contents of the Notification element).

Orientation — Description of the orientation of a physical resource.

Default = Description, which is required if the Comment element may become
required, as is the case in the Notification element (see Table 3-32 Contents of the
Notification element.

Path ? PDFPath Description of the area that the comment is associated with in the coordinate system of
the element where the path resides.

In the case of physical resources, Layout resources and resources that are related to
Layout, Path is defined within the coordinate system of the resource in which it
resides. For example, if the comment is inserted in an ExposeMedia resource that
describes a plate, the path refers to the plate coordinate system.

In all other cases, it is defined in the process coordinate system of the JDF node that
contains the element that Comment containing Path is defined in.

Note that there are cases where a coordinate system is not available and therefore
defining Path is not recommended, e.g. Customerinfo.

text Body of the comment. Note that whitespace is preserved only as generic whitespace in
XML. Thus carriage returns, line feeds or tabs may be lost.[RP72]

The following figure shows the structure of the generic content defined above.

P o e e g e g e g o e o ™~

'any JDF/JMF element r— Comment*
RestEffortExceptions? Attribute?

* CommentURL? . Box?

. DescriptiveName? & Language?

. MustHonorExceptions? = Name?

. OperatorIntervention- . Path?
Exceptions?

Figure 3.2 Structure of JDF Generic Contents

3.1.2 Fundamental JDF Attributes and Elements

The following table presents the attributes and elements likely to be found in any given JDF node. Three of the
attributes in Table 3.3, below, are required, and must appear in every JDF node. Although the rest are designated as
optional, they are optional in the sense that they are required only under certain circumstances, not that they may be
left out if desired. The circumstances under which they are required are described in the Description column.

The most important of the attributes is the Type attribute, which defines the node type. The value of the Type
attribute defines the product or process the JDF node represents. As is detailed in Section 3.2 Common Node Types,
all nodes fall into one of the following four general categories: process, process group, combined processes and
product intent. Each node is identified as belonging to one of these categories by the value of its Type attribute, as
described in the table below. For example, if Type = Product, the node is a product intent node. Each of these
categories is described in greater detail in the sections that follow.

Page 35

Name
Activation ?

Data Type
enumeration

Page 36

Table 3-3 Contents of a JDF node

Scope
special
see
text

(D)

Description

Describes the activation status of the node. Allows for a range of
activity, including deactivation and testrunning. Possible values,
in order of involvement from least to most active, are:

Inactive — The node and all its descendents must not be executed
or tested. This value is set if only certain parts of a JDF job should
be executed or tested or if the node contains information required
by other processes (as is the case with independent spawning and
merging, described in Section 4.4.5).

Informative — The JDF ticket is for information only. If a job is
Informative, it must not be processed. Jobs with Activation=
Informative will generally be sent to an operator console for
preview but are still completely under the control of an external
controller. When a JDF ticket is supplied to a customer as proof of
execution, its Activation should also be Informative. When a new
Job ticket with an identical /D attribute and a higher Activation is
submitted to a Device, that JDF job ticket must replace the JDF job
ticket that was submitted to the Device with an Activation of
Informative.[RP73]

Held — Execution has been held. Ifa job is Held, it must not be
processed until its Activation is changed to Active. TestRun — The
node requests a test run check by an controller or a device. This
does not imply that the node should be automatically executed
when the check is completed. Descendents of a node that is being
test run are not to be considered Active.

TestRunAndGo — Similar to TestRun, but requests a subsequent
automatic start if the testrun has been completed
successfully.Active — Default value. The node maybe executed as
soon as all inputs are Available or Complete and all outputs are not
incomplete.

A child node inherits the value of the Activation attribute from its
parent. The value of Activation corresponds to the least active
value of Activation of any ancestor, including itself. Therefore, if
any ancestor has an Activation of Inactive, the node itself
islnactive. If no ancestor is /nactive but any ancestor is
Informative, the node is Informative unless the node itself is
Inactive If no ancestor is Informative but any ancestor is TestRun,
the node is TestRun unless the node itself is Informative. If no
ancestor has a value of /nactive or TestRun and any ancestor has a
value of TestRunAndGo, the node has a value of TestRunAndGo
unless that node is Inactive or TestRun, and so on.

The following table illustrates the actions to be applied to a node
depending on the value of Activation.

Activation Test Node Execute Node
Inactive false false
Informative false false
Held false false
Active false true
TestRun true false
TestRunAndGo true true

Page 36

Name
Category ?

Data Type
NMTOKEN

Scope
D

Page 37

Description

Named category of this node. Used when Type="Combined” or
Type="ProcessGroup” to identify the general node category. This
allows processors to identify the general purpose of a node without
parsing the Types field. For instance a RIP for final output and
RIP for proof process may have identical Types attribute values
but will have Category="ProofRIPping” or Category
="RIPping” respectively. Values include:

Binding: Binding of a bound product.

DigitalPrinting: A RIP&Print run on a digital printer that produces
final output.

Folding: Folding of a product.

Printing: A press run that produces final output.
Proofing: Generation of a proof.

ProofRIPping: RIP process for generating a proof.
RIPping: RIP process for generating final output.
PrePress: General prepress.

PostPress: General postpress.[RP74]

ICSVersions ?

NMTOKENS

ICS Versions that this JDF node complies with. The format is
<ICSName>-<Version>. For instance:

DigitalPrinting LVLI-1.0: ICS for Digital Printing, level 1,
version 1.0.[RP75]

ID

ID

Unique identifier of a JDF node. This ID is used to refer to the
JDF node.

JobID ?

string

Job identification used by the application that created the JDF job.
Typically, a job is identified by the internal order number of the
MIS system that created the job.

JobPartID ?

string

Identification of a JDF Node within a job, used by the application
that created the job. Typically, this is internal to the MIS system
that created the job and coincides with a process or set of
processes.

MaxVersion ?

string

Maximum JDF version to be written by an Agent that modifies this
node. If not specified, an Agent that processes the node may write
any version it is capable of writing.[RP76]

ProjectID ?

string

Identification of the project context that this JDF belongs to. Used
by the application that created the JDF job.

RelatedJoblID ?

string

Job identification of a related job. Used to identify the JobID of a
previous run of this job or job with very similar settings. May be
used to retrieve non-JDF device specific settings from a data store.

RelatedJobPartID ?

string

Job identification of a related job part. Used to identify the
JobPartID of a previous run of this job or job with very similar
settings. May be used to retrieve non-JDF device specific settings
from a data store.[RP77]

SpawnlID ?

NMTOKEN

Identification of a spawned part of a job. Typically this is used to
map Audits and messages to a spawned processing step in the
workflow.

SettingsPolicy ?

enumeration

SettingsPolicy has been moved to any JDF element (##ref table
generic contents of elements). [RP78]

Page 37

Page 38

Data Type Scope | Description

enumeration | L Identifies the status of the node. Possible values are:

Waiting — The node may be executed, but it has not completed a
test run.

IFQI
L
g
o

TestRuninProgress — The node is currently executing a test run.

Ready — As indicated by the successful completion of a test run, all
ResourceLinks are correct, required resources are available, and
the parameters of resources are valid. The node is ready to start.

FailedTestRun — An error occurred during the test run. Error
information is logged in the Notification element, which is an
optional subelement of the AuditPool element described in Section
3.10.

Setup —The process represented by this node is currently being set
up.

InProgress — The node is currently executing.

Cleanup — The process represented by this node is currently being
cleaned up.

Spawned — The node is spawned in the form of a separate spawned
JDF.

The status Spawned can only be assigned to the original instance
of the spawned job. For details, see Section 4.4.

Stopped — Execution has been stopped. If a job is Stopped,
running may be resumed later. This status may indicate a break, a
pause, maintenance, or a breakdown—in short, any pause that does
not lead the job to be aborted.

Completed — Indicates that the node has been executed correctly,
and is finished.

Aborted — Indicates that the process executing the node has been
aborted, which means that execution will not be resumed again.
Pool — Indicates that the node processes partitioned resources and
that the Status varies depending on the partition keys. Details are
provided in the StatusPool element of the node.

Derivation of the Status of a parent node from the Status of child
nodes is non-trivial and implementation-dependent.

StatusDetails ? | string | L Description of the status phase that provides details beyond the enumerative
_ values given by the Status attribute. For a list of supported values, see
Appendix G.[RP79]
Template ? boolean R Indicates that this JDF ticket is a template that is used to generate
_ JDFs but must not be [RP80]exchanged as a job description. Default
=“false”.
TemplatelD ? string D Name or ID that identifies a JDF template. Can be used to
ow in JDF 1.2 differentiate between various templates. If Template=false,
TemplatelD identifies the template that was used to generate this
JDF.[RP81]
TemplateVersion ? | string D Version of the JDF template. Can be used to differentiate between
New in JDF 1. various template versions. If Template=false, TemplateVersion
identifies the version of the template that was used to generate this

Page 38

Name

Data Type

Scope

Page 39

Description
JDF.[RP82]

Type

NMTOKEN

L

Identifies the type of the node. Any JDF process name is a valid
type. The processes that have been predefined are listed in
Chapter 6, although the flexibility of JDF allows anyone to create
processes. In addition to these, there are three values which are
described in greater detail in the sections that follow:

Combined
ProcessGroup

Product: 1dentifies a Product Intent node.

xsi:type ?

NMTOKEN

Informs schema aware validators of the JDF Node type definition
that the containing node is to be validated against. The schema for
this version includes definitions for all the JDF Nodes defined in
Section 6. If omitted then a general definition for JDF Nodes will
be used.

See Appnedix ##ref 3.1 for more information.[RP83]

Types ?

[RP84]

NMTOKENS

List of the Type attributes of the nodes that are combined to create
this node. This attribute is required if Type = Combined, optional
when Type="ProcessGroup” and is ignored if Type equals any
other value. For details on using Combined nodes, see Section
3.2.3.

If the Types attribute is specified, that JDF node must not contain
child JDF nodes.

The special tokens:
RIPping

Finishing
ProofImaging[RP85]

are defined to allow an MIS to roughly specify finishing, proofing
and RIPping without knowing the details of the respective
combined processes. [RP86]For details on using ProcessGroup
nodes, see Section ##ref 3.2.2.

Version ?

i

enumeration

Text that identifies the version of the JDF node. Possible values
are:“1.1” and “1.2”. The Version attribute is required in the JDF
root node, but optional in child nodes. The version of a JDF Node
is defined by the highest version of the JDF Node itself or any
child JDF Node or element or any directly or indirectly linked
resources. For details on JDF versioning see chapter ##ref
3.12.[RP87]

xmins?

URI

JDF supports use of XML namespaces. The namespace must be
declared in the root JDF element. For details on using namespaces
in XML, see http.//www.w3.org/TR/REC-xml-names/. For
versions 1.1 to 1.x of JDF xmins, the value of xmlns must be
http://www.CIP4.org/JDFSchema_1_1

AncestorPool ?

element

If this element is present, the current JDF node has been spawned,
and this element contains a list of all ancestors prior to spawning.
See Section 3.3.

AuditPool ?

element

List of elements that contains all relevant audit information.
Audits are intended to serve the requirements of MIS for
evaluation and invoicing. See Section 3.10.

Page 39

Page 40

Name Data Type Scope | Description

Customerinfo ? element D Container element for customer-specific information. See Section
3.4.

JDF * element L Child JDF nodes. The nesting of JDF nodes defines the JDF tree.
In contrast to the elements above, JDF child nodes are not
contained in a list element.

Nodelnfo ? element L Container element for process-specific information such as
scheduling and messaging setup. Scheduling affects the planned
times when a node should be executed. Actual times are saved in
the AuditPool. See Section 3.5 for more details.

ResourcelLinkPool ? | element L List element for ResourcelLink elements, which describe the input
and output resources of the node. See Section 3.8 for more details.

ResourcePool ? element L List element for resources. See Section 3.6 for more details.

StatusPool ? element L Lists the details of a nodes partition dependent Status if the

Status of the node is “Pool”.

3.2 Common Node Types

As was noted in the preceding section, the Type of a node can fall into four categories. The first is comprised of the
specific processes of the kind delineated in Chapter 6, known simply as process nodes. The other categories are
made up of three enumerative values of the Type attribute: ProcessGroup, Combined, and Product, which is also
known as product intent. These three node types are described in this section.

The figure below, which was also presented as an illustration in Chapter 2, represents a theoretical job hierarchy
comprised of Product nodes, ProcessGroup nodes, and nodes that represent individual processes. The diagram is
divided into three levels to help illustrate the difference between the three kinds of nodes, but these levels do not
dictate the hierarchical nesting mechanism of a job. Note, however, that an individual process node may be the
child of a product intent node without first being the child of a process group node. Likewise, a process group node
may have child nodes that are also process groups.

! Resources are unique and cannot be overwritten by descendents. Rather, they can only be used by descendents.
An exception to this is described in Section 4.4.5 Case 5: Spawning and Merging of Independent Jobs. In this case,
resources may also be used by a parent node.

Page 40

Page 41

Product nodes

Process group nodes

5834 dob oo\

Individual Process nodes

Figure 3.3 Job hierarchy with process, process group, and product intent nodes

3.2.1 Product Intent Nodes

Except in certain specific circumstances, the agent assigned to begin writing a JDF job will very likely not know
every process detail needed to produce the desired results. For example, an agent that is a job-estimating or job-
submission tool may not know what devices can execute various steps, or even which steps will be required.

If this is the case, the initiating agent creates a set of top-level nodes to specify the product intent, without
providing any of the processing details. Subsequent agents then add nodes below these top-level nodes to provide
the processing details needed to fulfill the intent specified.

These top-level nodes have a Type attribute value of Product to indicate that they do not specify any
processing. All processing needed to produce the products described in these nodes must be specified in Process
nodes, which exist lower in the job hierarchy.

Product nodes include intent resources that describe the end results the customer is requesting. The intent
resources that have already been defined for JDF are easily recognizable, as they contain the word “intent” in their
titles. Examples include Foldinglntent and Colorintent. All intent resources share a set of common
subelements, which are described in Section 7.1.1 Intent Resource Span Subelements. These resources do not
attempt to define the processing needed to achieve the desired results; instead they provide a forum to define a range
of acceptable possibilities for executing a job.

Each Product Intent node should contain at most one ResourceLink for one type of intent resource. If multiple
product parts with different intents are required, each part has its own Product Intent node. Deliverylntent
resources are a notable exception. Specifying multiple Deliverylntent resources effectively requests multiple
options of a quote. For more information about product intent, see Section 4.1.1 Product Intent Constructs.

3.2.2 Process Group Nodes

Intermediate nodes in the JDF job hierarchy—i.e., nodes 4, 5, and 6 in Figure 3.3—describe groups of processes.
The Type attribute value of these kinds of nodes is ProcessGroup. These nodes are used to describe multiple steps
in a process chain that have common resources or scheduling data.

Since the agent writing the job has the option of grouping processes in any way that seems logical, custom workflows
can be modeled flexibly. Process group nodes may contain further process group nodes, individual process nodes, or a
mixture of both node types. Sequencing of process group nodes should be defined by linking resources of the
appropriate leaves or, if the nature of the interchange resources is unknown, by linking PlaceHolder resources.

The higher the level of the process group nodes within the hierarchy, the larger the number of processes the
group contains. A high level process group node might include, for example, prepress, finishing, or printing
processes. Lower level process groups, on the other hand, define a set of individual steps that are executed as a

Page 41

Page 42

group of steps in the individual workflow hierarchy. For example, all steps performed by one designated individual
may be grouped in a lower level process group.

3.2.2.1 Use of the Types attribute in ProcessGroup nodes
ProcessGroup nodes may contain an optional Types attribute that allows a controller, e.g. an MIS system, to define
a set of processes that must be executed without defining the exact structure or grouping of these processes into
individual JDF nodes. ProcessGroup nodes with a non-empty Types attribute must not be executed. An Agent that
receives the ProcessGroup node must define the exact structure of the ProcessGroup node by executing the
following steps until the ProcessGroup/@ Types list is empty:
Step 1: Select at least one of the process types defined in Types and remove these values from the ProcessGroup
Types list.
Step 2: Create one new JDF child node within the ProcessGroup that either

A: Has a Type attribute matching the removed Types entry value

B: Is a Combined or ProcessGroup Node that contains the removed Types value or values.
Step 3: Link the appropriate resources that were predefined in the original ProcessGroup to the newly created sub
JDF(s). The ResourceLink may either be retained or deleted from the ProcessGroup. If it is retained, the
ProcessGroup must not be executed before the Resource that is linked by that ResourceLink is available. Otherwise,
the ProcessGroup may be executed, even if the Resource is not available.
Step 4: Add missing types to the sub JDF where appropriate. For instance, the original ProcessGroup Types
attribute list may have specified “Interpreting Rendering” or simply “RIPping” but the newly created RIP node
would specify “Interpreting Rendering Trapping Screening”.
Step 5: Finalize the newly created sub JDF by adding any missing Resources and Resource attributes. Note that
newly created resources must not be linked to the ProcessGroup but only to the sub-JDF.
An Agent must instantiate all of the processes in the Types attribute before releasing the JDF. The ordering of the
processes in the Types attribute must be maintained when instantiating the child nodes. JDF ProcessGroup nodes
that contain both a non-empty Types attribute and child JDF nodes are NOT supported.[RP8S]

3.2.2.2 ResourceLink Structure in ProcessGroup nodes

The contents of the ResourceLinkPool of a ProcessGroup node define the Resources that must be available for
the ProcessGroup itself to be executed.[RP89]

The following example shows the ResourceLink structure for a ProcessGroup in-line finishing node. Note the
presence of intermediate component links that link the individual processes. The corresponding Components have
been omitted for brevity.

<JDF Type = "ProcessGroup” ID = ”J1”>
<!—the resource links in the ProcessGroup define the resources that must be
available for the ProcessGroup to be submitted -->

<ResourcelLinkPool>

<!-- printed output components -->
<MedialLink Usage="Input" rRef="1L2"/>
<!-- gathered output components -->

< ComponentLink Usage="Output" rRef="L5"/>
</ResourceLinkPool>
<JDF Type = ”DigitalPrinting” ID = ”J2”>
<ResourcelLinkPool>

<!-- digital printing parameters -->
<DigitalPrintingParamsLink Usage="Input" rRef="L1"/>
<!-- input sheets -->
<MediaLink Usage="Input" rRef="12"/>
<!-- printed output components -->

<ComponentLink Usage="Output" rRef="L3"/>
</ResourcelLinkPool>
</JDF>
<JDF Type = "“Gathering” ID = ”J3">
<ResourcelinkPool>
<!-- gathering parameters -->
<GatheringParamsLink Usage="Input" rRef="14"/>

Page 42

Page 43

<!-- printed output components -->
< ComponentLink Usage="Input" rRef="L3"/>
<!-- gathered output components -->

< ComponentLink Usage="Output" rRef="L5"/>
</ResourceLinkPool>
</JDF>
<JDF Type = ”Stitching” ID = ”J4”>
<ResourceLinkPool>

<!-- Stitching parameters -->
<StitchingParamsLink Usage="Input" rRef="16"/>
<!-- gathered output components -->

<ComponentLink Usage="Input" rRef="L5"/>
<!-- stitched output components -->

<ComponentLink Usage="Output" rRef="L7"/>
</ResourcelLinkPool>
</JDF>
</JDF>

3.2.3 Combined Process Nodes

The processes described in Chapter 6 Processes define individual workflow steps that are assumed to be executed by a
single-purpose device. Many devices, however, are able to combine the functionality of multiple single-purpose
devices and execute more than one process. For example, a digital printer may be able to execute the Interpreting,
Rendering, and DigitalPrinting processes. To accommodate such devices, JDF allows processes to be grouped
within a node whose Type = Combined. Such a node must also contain a Types attribute, which in turn contains an
ordered list of the Type values of each of processes that the node specifies. The ordering of the process names in the
Types attribute is significant and specifies the ordering in which the processes are assumed to be executed.

Furthermore, ResourceLink elements in Combined nodes should specify a CombinedProcessindex attribute in
order to define the subprocess to which the resource belongs. Combined nodes are leaf nodes and must not contain
further nested JDF nodes.

A device with multiple processing capabilities is able to recognize the Combined node as a single unit of work
that it can execute. Therefore, all resources for each of the subtasks that define the Combined node and that are
explicitly defined as ResourceLinks must be available before the node can be executed. In addition, all input and
output resources that are consumed and produced externally by the process must be specified in the
ResourcelLinkPool element of the node. This includes all required Parameter resources as well as the initial input
resources and final output resources. Intermediate resources that are internally produced and consumed, on the other
hand, need not be specified.

In a combined process node, the information defined by the various resources linked as input to the various
subprocesses are logically available to all processes of the combined node. In situations where the parameter
resource of more then one subprocess specifies the mapping of sheet surface content to media, the subprocess that
specifies such a mapping that is defined earliest in the Types attribute list must be used, and any other mappings
specified by any down-stream subprocess Resource must be ignored.

3.2.3.1 Combined Process Nodes with Multiple Processes of the Same Type

A Combined node may contain multiple instances of the same process type, e.g. Types = “Cutting Folding
Cutting”. In this case, the ordering and mapping of links processes is significant — the parameters of the first
Cutting process are most likely to be different from those of the second Cutting process. Mapping is accomplished
using the CombinedProcessindex attribute in the respective ResourceLink.

<JDF Type = " Conbi ned” Types = "Cutting Folding Cutting” ID = "J1">

<! —Resources (inconplete.) -->
<Resour cePool >

<l-- paraneters of the first Cutting Process-->
<CuttingParans |ID="L1"/>
<l-- Folding paraneters -->

<Fol di ngPar anms | D="L2"/>

Page 43

Page 44

<l-- paraneters of the third Cutting Process-->
<CuttingParans | D="L3"/>

<!-- raw i nput conponents -->
<Conponent | D="L4"/>

<!-- conpl eted output conmponents -->

<Conponent | D="L5"/>
</ Resour cePool >

<l-- Links -->
<Resour ceLi nkPool >
<l-- paraneters of the first Cutting Process-->

<Cut ti ngPar ansLi nk Usage="Input" Conbi nedProcessl ndex="0" rRef="L1"/>
<l-- Folding paraneters -->
<Fol di ngPar ansLi nk Usage="I| nput" Conbi nedProcessl| ndex="1" rRef="L2"/>

<l-- paraneters of the first Cutting Process-->

<Cutti ngPar ansLi nk Usage="I|nput" Conbi nedProcessl| ndex="2" rRef="L3"/>
<!-- raw i nput conponents -->

<Conponent Li nk Usage="Input" rRef="L4"/>
<l-- conpl et ed out put conmponents -->

<Component Li nk Usage="CQut put" rRef="L5"/>
</ Resour ceLi nkPool >
</ JDF>

3.2.3.2 Examples of Combined Process Nodes

The following example of the ResourceLinkPool of a JDF node describes digital printing with in-line finishing and
includes the same processes as the previous ProcessGroup example. The node requires the parameter resources and
consumable resources of all three processes as inputs, and produces a completed booklet as output. The
intermediate printed sheets and gathered piles are not declared, since they exist only internally within the device and
cannot be accessed or manipulated by an external controller.

<JDF Type = “Conbi ned” Types = "DigitalPrinting Gathering Stitching” ID =
HJ1H>
<Resour celLi nkPool >

<l-- digital printing paraneters -->
<Digital PrintingParansLi nk Usage="I|nput"” Conbi nedProcessl ndex="0" rRef="L1"/>
<l-- gathering paraneters -->

<Gt heri ngPar ansLi nk Usage="1nput" Conbi nedProcessl ndex="1" rRef="L4"/>
<l-- Stitching paraneters -->

<Stitchi ngParansLi nk Usage="1nput" Conbi nedProcessl| ndex="2" rRef="L6"/>
<l-- input sheets -->

<Medi aLi nk Usage="Input" Conbi nedProcessl ndex="0" rRef="L2"/>
<l-- stitched output conponents -->

<Component Li nk Usage="CQut put" Combi nedProcessl ndex="2" rRef="L7"/>
</ Resour ceLi nkPool >
</ JDF>

3.2.4 Process Nodes

Process nodes represent the very lowest level in a job hierarchy. They must not contain further nested JDF nodes, as
every process node is a leaf node. These nodes define the smallest work unit that may be scheduled and executed
individually within the JDF workflow model. In Figure 3.6 below, nodes 7-17 represent process nodes. The various
individual process node types are specified in Chapter 6 Processes.

3.3 AncestorPool

When a job is spawned, an AncestorPool is created in the spawned job to
identify its parents and grandparents. This allows storing of information about job
context in a spawned node as well as allowing the job to be correctly merged with
its parent after it is completed. The AncestorPool element is only required in the

Ancestor
Pool

An ancestor pool contains
the job’s context when the
Page 44 job is spawned. This
includes scheduling
information and optionally
customer information.

Page 45

root of a spawned job. Spawning and merging is described in Section 4.4 Spawning and Merging. The AncestorPool
element contains an ordered list of one or more Ancestor elements, which reflect the family tree of a spawned job.
Each Ancestor element identifies exactly one ancestor node. The ancestor nodes reside in the original job where the
job with the AncestorPool has been spawned off. The position of the Ancestor element in the ordered list defines the
position in the family tree. The first element in the list is the original root element, the last element in the list is the
parent, the last but one the grandparent, and so on. The following table lists the contents of an AncestorPool element.

Table 3-4 Contents of the AncestorPool element

Name Data Type | Description

Ancestor + element Ordered list of one or more Ancestor elements, which reflect the family tree of a
spawned job.

Part * element List of parts that this node was spawned with. Used in case of parallel Spawning of a

_ node. This defines the aggregated Parts in case of nested spawns, i.e. a logical AND of
all spawn Parts. For instance, the JDF that was spawned with a Sheetname partition
and subsequently spawned with a Separation would contain both the SheetName and
Separation within the Part.

An Ancestor element may contain read only copies of all the attributes of the node that it represents with the
exception of the ID attribute, which must be copied to the NodelD attribute of that Ancestor element. Ancestor
elements cannot, however, contain further subelements except for read only copies of Customerinfo and Nodelnfo.
The attributes of Ancestor elements are described in

Table 3-5 Attributes of the Ancestor element

Name Data Type Description

Activation ? enumeration | Copy of the Activation attribute from the ancestor node. For details, see Table
3-3.

FileName ? URL The URL of the JDF file where the ancestor node resided prior to spawning.

JobID ? string Copy of the JobID attribute from the ancestor node. For details, see Table 3-3.

JobPartlD ? string Copy of the JobPartID attribute from the original ancestor node. For details,
see Table 3-3.

MaxVersion ? string Copy of the MaxVersion attribute from the original ancestor node. For details,

_ see Table 3-3.[RP90]

NodelD NMTOKEN ? | Copy of the /D attribute of the ancestor node.

ProjectID ? string Identification of the project context that this JDF belongs to. Used by the
application that created the JDF job.

SpawnID ? NMTOKEN | Copy of the SpawnlD attribute of the ancestor node.

Status ? enumeration | Copy of the Status attribute from the original ancestor node. For details, see
Table 3-3.

StatusDetails ? | string Copy of the StatusDetails attribute from the original ancestor node. For
details, see Table 3-3.[RP91]

Type ? NMTOKEN | Copy of the Type attribute from the original ancestor node. For details, see
Table 3-3.

Types? NMTOKENS [Copy of the Types attribute from the original ancestor node. For details, see
Table 3-3.

? The data type is NMTOKEN and not IDREF because the ID does not reside in the spawned job. The
corresponding ID element resides in the original job.

Page 45

Page 46

Name Data Type Description

Version ? string Copy of the Version attribute from the original ancestor node. For details, see
Table 3-3.

Customerinfo ? | element Reference copy of the Customerinfo element from the original node. For

_ details, see Table 3-3.

Nodelnfo ? element Reference copy of the Nodelnfo element from the original node. For details,

_ see Table 3-3.

3.4 Customer Information

The Customerinfo element contains information about the customer who orders the job. Usually, this element is
specified in the uppermost node of a job (that is, the root node), although it is also valid in lower nodes in situations
such as model subcontracting. Table 3-6 Contents of the CustomerInfo element describes the contents of this
element.

Table 3-6 Contents of the Customerinfo element

Name Data Type Description

BillingCode ? string A code to bill charges incurred while executing the node.

CustomerID ? string Customer identification used by the application that created the job. This is
usually the internal customer number of the MIS system that created the job.

CustomerJobName ? | string The name that the customer uses to refer to the job.

CustomerQOrderID ? string The internal order number in the system of the customer. This number is

usually provided when the order is placed and then referenced on the order
confirmation or the bill.

’ Creating Better

Job Tracking & Reporting

Customer information within JDF can provide a bridge between your
CRM systems and production. How could JDF be used to automate
the process of reporting to customers on the status of their jobs?

rRefs ? IDREFS Array of IDs of any elements that are specified as ResourceRef elements.
In this version it will be the IDREF of a ContactRef’.

Company ? refelement | Resource element describing the business or organization of the contact. In

Deprecated in JDF 1.1| JDF 1.1 and beyond, Company affiliation of Contacts is specified in
Contact.

Contact * refelement | Resource element describing contacts associated with the customer. There

_ must be one Contact which has ContactTypes including “Customer”.

CustomerMessage* | element Element that describes messages to the customer when certain conditions are
met.

Table 3-7 Contents of the CustomerMessage element

Name Data Type Description

. [RP92]

3 tRefs also enables spawning and merging if Customerlnfo is extended with private ResourceRef elements.

Page 46

Page 47

ComChannel *

refelement

Communication channel for the desired CustomerMessage.

In case it is not specified the CustomerMessage will be provided
according to system predefined information. The
CustomerMessage must be sent to each
ComChannel specified.[RP93]

Language ?

language

Language to be used for the CustomerMessage. Possible values are
defined in IETF RFC 1766.
If none is specified, the system specified value is assumed.

3.5 Node Information

The Nodelnfo element contains information about planned scheduling and message routing. It allows MIS to plan,
schedule and invoice jobs or job parts. Table 3-8 Contents of the Nodelnfo element describes the contents of the

Nodelnfo element.

Table 3-8 Contents of the Nodelnfo element

Name Data Type Description
CleanupDuration ? duration Estimated duration of the clean-up phase of the process.
CostType ? enumeration | Whether or not the execution of this JDF is chargeable to the customer or not.
One of:
Chargeable
Nonchargeable
If not specified, the cost type is unknown.[RP94]

DuelLevel ? enumeration | Description of the severity of a missed deadline. Possible values are:
Unknown — Default value. Consequences of missing the deadline are not
known.

Trivial — Missing the deadline has minor or no consequences.
Penalty — Missing the deadline incurs a penalty.
JobCancelled — The job is cancelled if the deadline is missed.

End? dateTime Date and time at which the process is scheduled to end.

FirstEnd ? dateTime Earliest date and time at which the process may end.

FirstStart ? dateTime Earliest date and time at which the process may begin.

IPPVersion ? XYPair A pair of numbers indicating the version of the IPP protocol to use when

_ communicating to IPP devices. The X value is the major version number.
Default = system specified

JobPriority ? integer The scheduling priority for the job where 100 is the highest and 1 is the

_ lowest. Amongst the jobs that can be printed, all higher priority jobs should
be printed before any lower priority ones. If one of the deadline oriented
attributes, e.g., FirstStart or LastEnd and JobPriority are specified, the
deadline oriented attributes must be honored before considering JobPriority.
Default = 50.

LastEnd ? dateTime Latest date and time at which the process may end. This is the deadline to
which DueLevel refers.

LastStart ? dateTime Latest date and time at which the process may begin.

NaturalLang ? language Language selected for communicating attributes. If not specified, the

_ operating system language is assumed.

MergeTarget ? boolean If MergeTarget = true and this node has been spawned, it must be merged

with its direct ancestor by the controller that executes this node. The path of

Page 47

Name Data Type

iieprecated in JDF 1.1|

Page 48

Description

the ancestor is specified in the last Ancestor element located in the
AncestorPool of this node. It is an error to specify both Merge Target and
TargetRoute in one node.

Default = false, which means that some other controller will take care of
merging.

Note: MergeTarget has been deprecated in JDF 1.1 because avoiding
concurrent access to the ancestor node is ill defined and cannot be
implemented in an open system without proprietary locking mechanisms.

Route ? URL

The URL of the controller or device that should execute this node. If Route
[RP95]is not specified, the routing controller must determine a potential
controller or device independently. For details, see Process Routing

rRefs ? IDREFS

Array of IDs of any elements that are specified as ResourceRef elements.
In this version it may be the IDREF of a JMFRef or EmployeeRef*.

SetupDuration ? duration

Estimated duration of the setup phase of the process.

Start ? dateTime

Date and time of the planned process start.

TargetRoute ? URL

The URL where the JDF should be sent after completion. If TargetRoute is
not specified, it defaults to the input Route attribute of the subsequent node
in the process chain. If this is also not known, the JDF should be sent to the
processor default output URL. JIMF/QueueSubmissionParams/@ReturnURL
takes precedence over Nodelnfo/@ TargetRoute of the JDF that is
processed.

TotalDuration ? duration

Estimated total duration of the process, including setup and cleanup.

WorkType ? enumeration

Definition of the work type for the execution this JDF, i.e. whether or not this
JDF relates to originally planned work, an alteration or rework. One of

Original: Standard work that was originally planned for the job

Alteration: Work done to accommodate change made to the job at the request of
the customer

Rework: Work done due to unforeseen problem with original work (bad plate,
resource damaged, etc.)

If not specified, the work type is undefined.

WorkTypeDetails | string
?

Definition of the details of the work type for the execution this JDF, i.e. why the
work will be done.

For WorkType="Alteration”, values may include
CustomerRequest: The customer requested change(s) requiring the work.

InternalChange: Change was made for production efficiency or other internal
reason.

For WorkType="Rework”, values may include

ResourceDamaged: A resource needs to be created again to account for a
damaged resource (damaged plate, etc.)

EquipmentMalfunction: Equipment used to produce the resource malfunctioned,
resource must be created again.

UserError: Incorrect operation of equipment or incorrect creation of resource
requires creating the resource again.

If not specified, the work type details are unknown.[RP96]

Businessinfo? element

Container for business related information. It is expected that JDF will be
utilized in conjunction with other eCommerce standards, and this container is

* rRefs also enables spawning and merging if Nodelnfo is extended with private ResourceRef elements.

Page 48

Page 49

Name Data Type Description

provided to store the eCommerce information within JDF in case a workflow
with JDF as the root level document is desired. When JDF is used as part of
an eCommerce solution such as PrintTalk, the information given in the
envelope document overrides the information in Businessinfo.

Employee ? refelement The internal administrator or supervisor that is responsible for the product or
process defined in this node.

JMF * element Represents JMF query messages that set up a persistent channel, as described
in Section 5.2.2.3 Persistent Channels. These message elements define the
receiver that is designated to track jobs via JMF messages. These message
elements should be honored by any JMF-capable controller or device that
executes this node. When these messages are honored, a persistent
communication channel is established that allows devices to transmit, for
example, the status of the job as JMF Signals.

NotificationFilter * element Defines the set of Notification elements that should be logged in the
AuditPool. This provides a logging method for devices that do no not support
JMF messaging. For details of the NotificationFilter element, see 5.5.1.1
Events.

3.6 StatusPool

The StatusPool describes the Status of a JDF node that processes partitioned resources. StatusPool elements are
only valid if the node’s Status="Pool”, otherwise the node’s Status is valid for all parts, regardless of the contents
of StatusPool. It may contain PartStatus elements that define the node’s status with respect to specific partitions.
It is an error to define PartStatus elements that reference identical or overlapping parts within one StatusPool.
Partitioned resources are described in Section 3.9.2 Description of Partitionable Resources.

Table 3-9 Contents of the StatusPool element

 Name DataType || [Description
Status ? enumeration | Identifies the status of the node. The Status of individual partitions may be
overwritten by PartStatus elements. Possible values are all valid Status attributes
of a JDF node except “Pool” are valid as defined in Table 3-3 Contents of a JDF
node, Status.

StatusDetails ? | string | Description of the status that provides details beyond the enumerative values
_ given by the Status attribute. The StatusDetails of individual partitions may be

overwritten by PartStatus elements. For a list of supported values, see
Appendix G.[RP97]

PartStatus * | element Element that defines the node’s status for a set of parts.

The following table describes the PartStatus element.

Table 3-10 Contents of the PartStatus element

Data Type Description
Status ? enumeration | Identifies the status of an individual part of the node. Overwrites the Status
attribute defined in StatusPool. Possible values are identical to those defined

in: Status

Page 49

Page 50

Name Data Type Description

StatusDetails ? string Description of the status that provides details beyond the enumerative values
given by the Status attribute. Overwrites the StatusDetails attribute defined
in StatusPool. Possible values are identical to those defined in: For a list of
supported values, see Appendix G.[RP98]

Part ° element Specifies the selected part that the PartStatus is valid for. This must be a leaf
or intermediate partition of the Node’s output resource. Thus, if the node’s
output resource is partitioned by Side and Separation, The Part may contain

either Side only or Side and Separation, but not Separation only.

3.7 Resources

Resources represent the “things” that are produced or consumed by processes. They may be physical items such as
inks, plates, or glue; electronic items such as files or images; or conceptual items such as parameters and device
settings. Processes describe what resources they input or output through ResourcelLinks, discussed in Section 3.8
Resource Links. By examining the input and outputs of a set of processes, it is possible to determine process
dependencies, and therefore job routing.

All resources are contained in the ResourcePool element of a node. The ResourcePool element is described
in the following table.
Table 3-11 Contents of the ResourcePool element

Name Data Type Description
Resource * | element List of Resource elements. The Resource elements are abstract and serve as

placeholders for any resource type.

Like the Type attribute in abstract JDF nodes, the Class attribute in Resource elements helps to identify how
particular resources should be used. This attribute contains seven values, and all resources fall under one of these
seven classifications. For example, all resources whose Class = Consumable are physical resources that will be
consumed over the course of the process. These values are listed in Table 3-12, below, and are described in greater
detail in the sections that follow.

Table 3-12 Contents of the abstract Resource element

Name Data Type \ \Description

AgentName ? String The name of the agent application that created the resource. Both the
_ company name and the product name can appear, and should be consistent

between versions of the application.

AgentVersion ? String The version of the agent application that created the resource. The format
_ of the version string can vary from one application to another, but should
be consistent for an individual application.
Author ? string Text that identifies the person who generated the resource. [RP99]
CatalogID ? string Identification of the resource e.g. in a catalog environment. Defaults to the
ProductID.
CatalogDetails ? string Additional details of a resource in a catalog environment.
Class enumeration Defines the abstract resource type. For details, see the sections that follow.
Possible values are:
Consumable
Handling

> The cardinality of Part in PartStatus has been changed from * to none, e.g. exactly one element in version 1.1 of
the JDF specification.

Page 50

Name

Data Type

Page 51

\ \Description
Implementation
Intent
Parameter
PlaceHolder

Quantity

ID

ID

Unique identifier of a resource.

Locked ?

boolean

If true, the resource is referenced by an Audit and cannot be modified
without invalidating the Audit.

Default = false

PipelD ?

string

If this attribute exists, the resource is a pipe. The PipelD is used by JMF
pipe-control messages to identify the pipe. For more information, see
Section 4.3.2 Partial Processing of Nodes with Partitioned Resources

JDF nodes themselves may not be partitioned, although the input and
output resources may. If the input and output ResourceLinks reference
one or more individual partitions, the Node executes using only the
referenced Resources.

If multiple input resources are input to a process, the resource with the
highest granularity defines the partitioning. For instance, a
ConventionalPrinting process may consume a non-partitioned
ConventionalPrintingParams, and a set of Ink and ExposedMedia(Plate)
resources that are partitioned by Separation. The partition granularity will
be defined by the Ink and ExposedMedia(Plate) resources to be Separation.
The Separation partition set is defined by the superset of all defined
partition key values. If the Separation key values of Ink were Black and
Varnish, and the the Separation key values of ExposedMedia(Plate)
were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the
partition keys are not identical, both must be applied to restrict the node. If
the partition keys are non-overlapping, e.g. in an Imposition node, where a
RunList based input partition is mapped to a sheet based output partition,
the application must explicitily calculate the result. The following
examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition

Page 51

Page 52

Name Data Type \ \Description
SheetName= Separation= - SheetName=
”Sl” ”Cyan7’ + ”Sl”
Separation= Separation= .
»Cyan” »Black” Separation=
(PartUsage= Cyan
“Implicit”) +
SheetName=
9JS 1 2
Separation=
”Black”
SheetName= - SheetName= SheetName=
”Sl” ”81” S’Sl”
,S, eparetflon= Separation=
Cyan
7’Cyan9’
SheetName= - SheetName= error
,7S 1 2 HSZH
Separation=
?chan’7
SheetName= Separation= - error This is an error
”S1” ”Cyan” + set. The first inp
Separation= Separation= SheetName and
”Magenta” ”Black” defines the parti
The second inpu
Separation only
non-overlapping
values. The sepa
therefore the nul
SheetName= Separation= - error The first input is
”S1” ”Cyan” + SheetName and
Separation= Separation= defines the parti
”Cyan” ”Black” The second inpu
(PartUsage= Separation only
“Explicit”) SheetName and
overlapping set ¢
The separation v
defined by the s
RunIndex="0~7" | - SheetName= special This specifies sk
7s2” PlacedObject el
in the range of 0
case is importan
entries occur mu
imposition sheet
Overlapping Processing Using Pipes.
PipeProtocol ? NMTOKEN Defines the protocol use for pipe handling. JMF' is the only non-proprietary
- piping protocol that is supported. Proprietary pipe protocols may be
specified in addition to those defined below but will not necessarily be
interoperable. Allowed values include:
JMF — JMF based PipePush / PipePull messages.
None — No pipe support.

Page 52

Name

Data Type

Page 53

\ \Description

If PipeURL is specified and PipeProtocol is not specified, JMF is
assumed.

ProductID ?

string

An ID of the resource as defined in the MIS system.

rRefs ?

IDREFS

Array of IDs of internally referenced resources.

SettingsPolicy ?

enumeration

SettingsPolicy has been moved to any JDF element (##ref table generic
contents of elements). [RP100]

SpawniDs ?

NMTOKENS

List of SpawnIDs. This is used as a reference count how often the resource
has been spawned.

SpawnStatus ?

enumeration

The spawn status of a node indicates whether or not a node has been
spawned, and under what circumstances. The list is assumed to be ordered,
so that the SpawnStatus of a resource that has rRefs entries is defined as
the maximum SpawnStatus of all recursively linked resources. Possible
values are:

NotSpawned — Default value. Indicates that the resource has not been copied
to another process.

SpawnedRO — Indicates that the resource has been copied to another process
where it cannot be modified. RO stands for read-only.

SpawnedRW — Indicates that the resource has been copied to another process
where it can be modified. RW stands for read/write.

Status

F

enumeration

The status of a node indicates under what circumstances it may be processed
or modified. The list is assumed to be ordered, so that the Status of a
resource that has rRefs entries is defined as the minimum Sfatus of all
recursively linked resources. Possible values are:

Incomplete — Indicates that the resource does not exist, and the metadata is
not yet valid.

Unavailable — Indicates that the resource is not ready to be used or that the
resource in the real world represented by the physical resource in JDF is not
available for processing. The metadata is valid.

InUse — Indicates that the resource exists, but is in use by another process.
Also used for active pipes (see Sections 3.7.3 and 4.3.2).

Draft — Indicates that the resource exists in a state that is sufficient for
setting up the next process but not for production.

Complete — Indicates that the resource is completely specified and the
parameters are valid for usage. A physical resource with Status = Complete
is not yet available for production, although it is sufficiently specified for a
process that references it through a ResourceRef from a parameter resource
to commence execution.

Available — Indicates that the whole resource is available for usage.

UpdatelD ?

NMTOKEN

Unique ID that identifies the Resource or Resource partition. Note that
only one Resource, Resource partition or ResourceUpdate with a given
value of UpdatelD may occur per JDF document, even though the scope of
the ResourceUpdate is local to the resource that it is defined in.

Figure 3.4 shows the structure of the abstract resource classes defined above. Arrows define inheritance relations
and the thin orthogonal lines describe containing relations.

Page 53

________ Y
[ResourcePooI?]7' Resource*

CatalogDetails?
CatalogID?
Class

ID

Locked?

PipeID?
ProductID?
rRefs?
SettingsPolicy?
SpawnlIDs?
SpawnStatus?
Status
UpdatelD ?

® s s e * s e e e s e e e

BlockPreparationParams]

|- NoOp? | : e
ConventionalPrintingParams]

PP PN
P 2 PhysicalResource Contact?]
lilic_ejioid_er_ _ _I * AlternateBrand?
¥ Vi « Amount? IdentificationField* J
. Am tR i d?
(PIac:eHoIderResource) L - : :
- ‘ Location? —| Address? |
. rand? .
* ResourceWeight? * LocationName?
F———t———— o e * LocID?
| Implementation |

o T g e
Device | Employee |

T ———

——

—

|Handling | |Quantity | | Consumable |

— — —

i

(Exposed Media]

-—— L _——

Figure 3.4 Structure of the abstract resource types

3.7.1 Resource Classes

The following sections describe the functions of each of the seven values of the Class attribute. All resources fall

into one of these classes. In Chapter 7 Resources,
the class of each resource is indicated in the Resource
Properties subheading.

3.7.1.1 Parameter Resources

Parameter resources define the details of processes,
as well as any non-physical computer data such as
files used by a process. They are usually associated
with a specific process. For example, a required
input resource of the ColorSpaceConversion
process is the ColorSpaceConversionParams
resource. All predefined parameter resources contain
the moniker “Params” in their titles. Other examples

I £ Parameter &

— Intent Resources
Parameter and Intent Resources are information
about the print job. Intent resources may originate
in the customers RFQ and may include
information such as trim size, paper, the number of
colors, and so on. Later on in the process of

estimating and scheduling the job, these intents
may become parameters for production process.

of Parameter resources include FoldingParams and ConventionalPrintingParams.

Page 54

Page 55

Table 3-13 Additional contents of the abstract parameter Resource elements

Description
NoOp ? boolean Indicates whether a resource or resource partition should be treated as if it
- did not exist, e.g., to switch off a complete process step for the process that

requires the given parameter resource or partition as input. Default = false,
i.e., the Resource is operational and should be honored.

3.7.1.2 Intent Resources

Intent resources define the details of products to be produced without defining the process to produce them. In
addition, they provide structures to define sets of allowable options and to match these selections with prices. The
details of all intent resources are described in Section 7.1 Intent Resources. The abstract Intent resource element
contains no attributes or elements besides those contained in the abstract Resource element.

3.7.1.3 Implementation Resources

Implementation resources define the devices and operators that execute a given node. Only two implementation
resource types are defined: Employee (see Section 7.2.51) and Device, each of which is described in greater detail
in the Chapter 7.

Implementation resources can only be used as input resources and may be linked to any process. The abstract
Implementation resource element contains no attributes or elements besides those contained in the abstract
Resource element. An example demonstrating how to use implementation resources is provided in Section 3.8.2
Links to Implementation Resources.

Note that it is not recommended to specify the capabilities of a Device that is linked to a process to specify that
it should execute the given process.

3.7.1.4 Physical Resources (Consumable, Quantity, Handling)
Any resource whose Class is Consumable, Quantity, or Handling is considered a physical resource. They are
defined as follows:

e Consumable resources are resources that are
consumed during a process. Examples include Ink
and Media. They are the unmodified inputs in a
process chain.

Automating Inventory

Management

e Quantity resources are resources that have been
created by a process from either a Consumable JDF’s handling of physical resources provides
resource or an earlier Quantity resource. For | a bridge between your JDF enabled systems
example, printed sheets are cut and a pile of cut | and inventory management, ordering and
blocks is created. Component resources are an replenishing systems. This opens the door to
example of Quantity resources. just-in-time inventory management driven by

real-time scheduling and consumption data.

e A Handling resource is used during a process, but is

not destroyed by that process. ExposedMedia and
Tool are examples of such a resource, although it does describe various kinds of items such as film and
plates. A Handling resource may be created from a Consumable resource.

Table 3-14 Additional contents of the abstract physical Resource elements defines the additional attributes and
elements that may be defined for physical resources. The processes that consume physical resources—any kind of
physical resource—have the option of using these attributes and elements to determine in what way the resources
should be consumed. Table 3-14 Additional contents of the abstract physical Resource elements then describes the
contents of the Location subelement of physical resource elements.

Table 3-14 Additional contents of the abstract physical Resource elements

Data Type Description
AlternateBrand ? string Information, such as the manufacturer or type, about a resource compatible
to that specified by the Brand attribute, which is described below.

Page 55

Page 56

Name Data Type Description

Amount ? number Actual amount of the resource that is available.

Note that the amount of consumption and production of a node is specified
in the corresponding resource links.

AmountProduced ? | number Total amount of the resource that has been produced by all nodes that
reference this resource as output. This corresponds to the sum of all
CumulativeAmount values of output resource links of leaf JDF Nodes with
Status="Completed” that reference this resource.[RP101]

AmountRequired ? | number Total amount of the resource that is referenced by all nodes that will
consume this resource. This corresponds to the sum of all Amount values
of input resource links that reference this resource.

BatchID ? string ID of a specific batch of the physical resource

Brand ? string Information, such as the manufacturer or type, about the resource being
used.

PipePause ? number Parameter for controlling the pausing of a process if the resource amount in

- the pipe buffer passes the specified value. For details on using PipePause,
see Section 4.3.2.

PipeResume ? number Parameter for controlling the resumption of a process if the resource amount

- in the pipe buffer passes the specified value. For details on using
PipeResume, see Section 4.3.2.

RemotePipeEndPa | number Parameter for controlling the pausing of a process at the other end of the

use? pipe if the resource amount in the pipe buffer passes the specified value. For

- details on using RemotePipeEndPause, see Section 4.3.2.

RemotePipeEndRe | number Parameter for controlling the resumption of a process at the other end of the

sume ? pipe if the resource amount in the pipe buffer passes the specified value. For

- details on using RemotePipeEndResume, see Section 4.3.2.

ResourceWeight ? | double Weight of a single component of the resource in grams.

Unit ? NMTOKEN | Unit of measurement for the values of Amount and AmountRequired.
Note that it is strongly discouraged to specify units other than those that are
defined in Units

Weight ? double Weight of a single component of the resource in grams. This parameter

llegal in 1.1 collides with Media::Weight and is therefore illegal and has been replaced
= with ResourceWeight in version 1.1 and beyond.

Contact ? refelement If this element is specified, it describes the owner of the resource.

IdentificationField | refelement If this element is specified, a bar code or label is associated with this

* physical resource.

Location ? refelement Description of details of the resource location.
Note, in order to describe multiple locations, resources may be partitioned
by the Location-key as described in Section 3.9.2 Description of
Partitionable Resources.

QualityResult * refElement Results of quality measurements which were performed during or after the

production of this resource.

Page 56

Page 57

Structure of Location Subelement
Table 3-15 Contents of the Location element

~Name | DataType Description
LocationName ? string Name of the location, e.g., for example in MIS. This part key allows to
- describe distributed resources.
LocID? string Location identifier, e.g., within a warehouse system.
Address ? refelement Address of the storage facility. For more information, see Section 7.2.2.

3.7.1.5 PlaceHolder Resources

PlaceHolder resources, unlike physical resources, do not describe any logical or physical entity. Rather, they define
process linking and help to define process ordering when the exact nature of interchange resources is still unknown.
In essence, they serve as placeholders that stand in for defined resources. Using PlaceHolder resources, a
processing skeleton can be constructed that gives a basic shape to a job. The appropriate resources can be
substituted for PlaceHolder resources when they become known.

This kind of resource should only be used to link nodes of Type = ProcessGroup, since process leaf nodes have
well defined resources that should be used in preference. The only resource whose Class = PlaceHolder is called
PlaceHolderResource.

Like Parameter and Implementation resources, PlaceHolder resources contain no attributes besides those
contained in the abstract Resource element.

3.7.1.6 Selector Resources

IRemoved in JDF 1.1]

Resources of class Selector have been removed in JDF version 1.1 and higher. Note that they are not only
deprecated but actually removed from the format including the schema and must not be supported by a JDF 1.1
conforming agent

3.7.2 Position of Resources within JDF Nodes

Resources may exist in any JDF node, but JDF nodes may only reference local or global resources. In other words,
JDF nodes may only reference resources in the two kinds of locations: in the node’s own ResourcePool eclement
or in JDF nodes that are hierarchically closer to the JDF root. An exception to this rule, however, occurs if two
independent jobs are merged for a process step and are to be separated afterwards, as is the case when two
independent jobs are printed on the same web-fed press. For further details on independent job merging, see Section
4.4.5 Case 5: Spawning and Merging of Independent Jobs.

It is good practice to put resources into the highest-level node that references the resource. For example, the
RenderingParams resource should be located in the Rendering node, unless it is used by multiple Rendering
processes, in which case it should be located in the ProcessGroup node that contains the Rendering process
nodes. Resources that link more than one node should be placed in the parent node of the siblings that are linked by
the resource.

A process that needs additional detailed process information specifying the creation of a resource must infer this
information by explicitly linking to the appropriate parameter resource.

3.7.3 Pipe Resources

A Pipe describes the resource dependency in which a process begins to consume a resource while it is being
produced by another process. For example, stacking components while they are being printed, or consuming a data
stream while it is being written by an upstream process. Note that defining a Pipe resource does not automatically
set up communication between processes. The Controllers/Agents that execute the process must still implement the
protocol that defines the Pipe.

Using dynamic pipe control, a downstream process may control the total quantity produced by an upstream
process, and/or the quantity buffered by an inter-process transport device (i.e. Conveyor belt.) Additional description

Page 57

Page 58

of pipes and process communication via pipes is provided in Section 4.3.2 Partial Processing of Nodes with

Partitioned Resources

JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced

Resources.

If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition Node Partition Description
SheetName= - - SheetName= If only the input is
7817 »g1” partitioned, the node
partition is defined by
the input.
SheetName= - - SheetName= If only the input is
”S1” »g1” partitioned, the node
’S’eparajlon— Separation= part}tlon is defined by
Cyan the input.
”Cyan”
SheetName= Separation=| - SheetName= The first input is
”S1” ”Cyan” + »g1” partitioned by
Separation= Separation= S tion= SheetName and
”Cyan” ”Black” cparation Separation which
(PartUsage= Cyan” defines the partition
“Implicit”) + key granularity. The
SheetName= second input is
vt partitioned by
S1 Separation only but
Separation= has an implied
”Black” SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.
SheetName= - SheetName= | SheetName= The input and output
”S1” "S1” »g1” base partitions are
Separation= Separation= identical. The output
”Cyan” p further restricts the
“Cyan” partition.
SheetName= - SheetName= | error Input and output are
”S1” "S2” not overlapping. This
Separation= specifies the null set.
”Cyan”

Page 58

Page 59

SheetName=
2 S 1 2
Separation=
”Magenta”

Separation=
9 QCyanQ’ +
Separation=
”Black”

error

This is an error and
defines the null set.
The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of
separation values. The
separation value set is
therefore the null set.

SheetName=
2 S 1 EEl
Separation=
’QCyaHQ’

Separation=
”Cyan” +
Separation=
”Black”
(PartUsage=
“Explicit”)

error

The first input is
partitioned by
SheetName and
Separation which
defines the partition
key granularity. The
second input is
partitioned by
Separation only but has
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

Runlndex="0~7"

SheetName=
”82’9

special

This specifies sheet s2,
with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes.

Resources may contain a string attribute called PipelD that declares the resource to be a pipe, and identifies it in
a dynamic-pipe messaging environment. A pipe that is also controlled by JMF pipe messages is called dynamic

pipe. For more information about dynamic pipes, see Section 4.3.2.2 Dynamic Pipes.

3.7.4 ResourceUpdate Elements

ResourceUpdate elements are an abstract element class that optionally contains any of the attributes and elements
valid for the Resource that they reside in. Required attributes and elements of resources are optional in the
respective ResourceUpdate. In addition, a ResourceUpdate defined within a Resource must contain a unique

Page 59

Page 60

UpdatelD of type NMTOKEN. Only devices that process the resource as input can reference the UpdatelD of a
ResourceUpdate. Such references to ResourceUpdate elements must update the current state of the device.

When a ResourceUpdate is referenced from a device, e.g., from a PPML TicketRef element, said device will
update ONLY those elements that are explicitly specified within the ResourceUpdate. No attributes are inherited
from the Resource that contains the ResourceUpdate.

ResourceUpdate elements are useful for process input resources only and must not be applied to product
intent resources.

Table 3-16 Contents of the abstract ResourceUpdate Element

Description
UpdatelD NMTOKEN Unique ID that identifies the ResourceUpdate. Note that only
- one Resource, Resource partition or ResourceUpdate with

a given value of UpdatelD may occur per JDF document, even
though the scope of the ResourceUpdate is local to the
resource that it is defined in.

Example:
The following example shows ResourceUpdate elements in highlight.

<JDF xmlns="http://www.CIP4.org/JDFSchema 1 1” ID="MyCombinedProcessNode" Status="Ready"
Type="Combined"
Types="Interpreting Rendering DigitalPrinting" Version="1.1">

<ResourceLinkPool>
<InterpretingParamsLink rRef="”PDFIParams” Usage="Input” CombinedProcessIndex="0"/>
<RenderingParamsLink rRef="RParams” Usage="Input” CombinedProcessIndex="1"/>
<DigitalPrintingParamsLink rRef=”DPParams” Usage="Input” CombinedProcessIndex="2"/>

</ResourceLinkPool>

<ResourcePool>
<Media ID="White" .. />
<InterpretingParams ID="PDFIParams" Class="Parameter" Status="Available" PrintQuality="High"
Polarity="Positive" EmitPDFTransfers="false" UpdateID="SetPrintQualityDefault"/>
<InterpretingParamsUpdate UpdateID="SetNegativePolarity” Polarity="Negative”/>
<InterpretingParamsUpdate UpdateID="SetPositivePolarity” Polarity="”Positive”/>
<InterpretingParamsUpdate UpdateID="SetPrintQualityDraft” PrintQuality="”Draft”/>
<InterpretingParamsUpdate UpdateID="SetPrintQualityNormal” PrintQuality="Normal”/>
<InterpretingParamsUpdate UpdateID="SetPrintQualityHigh” PrintQuality="High”/>
</PDFInterpretingParams>
<RenderingParams ID="RParams" Class="Parameter" Status="Available">
<AutomatedOverprintParams OverPrintBlackText="true" OverPrintBlackLineArt="true"/>
</RenderingParams>
<DigitalPrintingParams ID="DPParams" Class="Parameter" Status="Available" PrintingType="Sheet">
<MediaRef rRef="White" MedialLocation="WhiteTray” UpdateID="SetMediaDefault”/>
<DigitalPrintingParamsUpdate UpdateID="SetMediaYellow” />
<Media ID="Yellow" Medialocation="YellowTray” />
</DigitalPrintingParamsUpdate>
</DigitalPrintingParams>

</ResourcePool>

</JDF>

3.8 Resource Links

ResourceLinks describe what resources a node uses, and how it uses them. They also allow node dependencies to be
calculated. The following diagram summarizes resource linking within a JDF node. In this example there are two
resources, A and B, which are placed in the node’s ResourcePool. To reference the resources, the node has two
resource links, ALink and BLink, in the ResourceLinkPool. The resource links are named by appending “Link” to

Page 60

Page 61

the type of resource referenced. Resource B also contains a reference to resource A, called ARef. References to
resources from within resources are named by appending “Ref” to the type of resource referenced.

ResourceLinkPool ResourcePool
ALink A

BLink

Figure 3.5 Resource Links and ResourceRefs

The previous section described resources used by the node in which it resides. This section describes how resources
may serve as links between nodes. As was described in Section 2.2 JDF Workflow, any resource that is the output
of one process will very likely serve as an input of a subsequent resource. Furthermore, some resources are shared
between ancestor nodes and their child nodes.

Each JDF node contains a ResourceLinkPool element that in turn contains all of the ResourceLink elements
that link the node to the resources it uses. They also define whether the resources are inputs or outputs. These
inputs and outputs provide conceptual links between the execution elements of JDF nodes. Outputs of one node
may in turn become inputs in another node, and a given node must not be executed before all required input
resources are available.® Figure 3.6 shows two processes that are linked by a resource. The resource represents the
output of Node 1, which in turn becomes an input for Node 2.

® The availability of a resource that is consumed as a whole is given by the Resource attribute

Status = Available. In the case of pipe resources, the availability depends on the individual parameter defining the
dynamics of a pipe (for details see Section 4.3.2 Partial Processing of Nodes with Partitioned Resources

JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.

If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and a set
of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity will be
defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set is defined by
the superset of all defined partition key values. If the Separation key values of Ink were Black and Varnish, and the
the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1 Input Partition 2 Output Partition ‘Node Partition Description
SheetName= - - SheetName= If only the input is
”S1” »g1” partitioned, the node

partition is defined by
the input.
SheetName= - - SheetName= If only the input is
”S1” »g1” partitioned, the node
,S’eparatflon— Separation= part}tlon is defined by
Cyan the input.
”Cyan”

Page 61

Page 62

SheetName= Separation= - SheetName= The first input is
”S1” ”Cyan” + »g1” partitioned by
Separation= Separation= S tion= SheetName and
”Cyan” ”Black” cparation Separation which
(PartUsage= Cyan” defines the partition
“Implicit”) + key granularity. The
SheetName= second input is
vt s partitioned by
S1 . Separation only but
Separation= has an implied
”Black” SheetName and has a
larger but overlapping
set of separation
values. The separation
value set is therefore
defined by the second
key.
SheetName= - SheetName= | SheetName= The input and output
”S1” "S1” »g1” base partitions are
Separation= S fion= identical. The output
”Cyan” cparation further restricts the
“Cyan” partition.
SheetName= - SheetName= | error Input and output are
”S1” *82” not overlapping. This
Separation= specifies the null set.
”Cyan”
SheetName= Separation=| - error This is an error and
”S1” ”Cyan” + defines the null set.
Separation= Separation= The first input is
”Magenta” ”Black” partitioned by
SheetName and
Separation which
defines the partition

key granularity. The
second input is
partitioned by
Separation only and
has a larger but non-
overlapping set of

separation values. The

separation value set is
therefore the null set.

Page 62

Page 63

Node 1 Bt *‘——mm N Node 2

Example:

Figure 3.6 Nodes linked by a resource

ResourcelLink elements may also contain optional attributes to select a part of a resource, such as a single
separation. A detailed description of resource partitioning is given in Section 3.9.2 Description of Partitionable
Resources.

ProcessGroup and Product nodes may be defined without the knowledge of the individual process nodes that
define a specific workflow. In this case, these intermediate nodes will contain ResourceLink elements that link the
appropriate resources. For example, a prepress node may be defined that produces a set of plates. When the
processes for creating the plates are defined in detail, the agent that writes the nodes may remove the ResourcelLink
elements from the intermediate node. Removing the ResourceLink specifies that the intermediate node may
execute; that is, it may be sent to the appropriate controller or department, even though the specific resources are not
yet available. If the ResourcelLinks are not removed, the intermediate node must not execute until the input
resources that are linked are available.

SheetName= Separation=| - error The first input is
”S1” ”Cyan” + partitioned by
Separation= Separation= SheetName and
”Cyan” ”Black” Separation which
(PartUsage= defines the partition
“Explicit”) key granularity. The
second input is
partitioned by

Separation only but has|
no implied SheetName
and therefore has a
non-overlapping set of
partition keys. The
separation value set is
therefore defined by
the second key.

RunIndex="0~7"] - SheetName=| special This specifies sheet s2,
7827 with all PlacedObject
elements with an Ord
in the range of 0 to 7.
This special case is
important when
RunList entries occur
multiply on different
imposition sheets.

Overlapping Processing Using Pipes).

Page 63

Page 64

Resource links may be used for process control. For example, if a proof input resource is required for a print

process, a print run may only commence when the proof is signed. The JDF format specification also includes a
complete specification of how resources are managed when JDF tickets are spawned and merged.

In some cases, determining whether information should be stored in an input or an output resource may be

difficult, as the distinction can be ambiguous. For example, is the definition of the color of a separation in the RIP
process a property of the output separation or a parameter that describes the RIP process? In order to reduce this
ambiguity, the following rules have been applied for the definition of input and output resources of processes as
described in Chapter 6 Processes and Chapter 7 Resources:

Product intent and process parameters are generally input resources, except when one process defines the
parameters of a subsequent process.

Consumable resources are always input resources.

Quantity and Handling resources are used both as input and output resources. Their usage is defined by the
“natural” process usage. For example, a printing plate is described as an ExposedMedia resource that is the
output of a ImageSetting process and the input of a ConventionalPrinting process.

Printed material is exchanged from node to node using the Component resource. Product intent nodes also
create Component output resources.

Every detailed process description must be defined as an input parameter of the first process where it is
referenced. This means that a device must not imply process parameters from its output resources. For
example, paper grammage MAY be defined in the Component output resource of the printing process but
MUST be defined as an input parameter of the Media of the printing process.

Any resource parameter that is used must be referenced explicitly. Resource parameters cannot be inferred
by following the chain of nodes backwards. This would make spawning of nodes non-local.

The last process in a chain of processes defines the output resource of its parent process.

In case of parallel processing, the sum of the outputs of all parallel subnodes defines the output of the parent node.

Page 64

Page 65

s N

AmountPool? PartAmount* Part

[ResourceLinkPool? | Resourcerink*

. CombinedProcessIndex?
DraftOK?
PipePartIDKeys?
PipeProtocol?
PipeURL?
ProcessUsage?
rRef
rSubRef?
Usage

. DraftOK?

. PipeProtocol?
. PipeURL?
.

————————— =~
(T T T T T T T ~ :ParameterLink I
PlaceHolderLink ¥ J/ A X~ = l——————=——— ~
S b R N
R ImplementationLink |
IntentLink ¢ _ _ — = F;uration?
_______ ud lphysi (B i | * Recommendation?
S SlamkE=
* louneg + StartOffset?
. Crientation?
0 PipePause?
. PipeResume?
) RemotePipeEndFPause?
. RemotePipeEndResume?
) Transformation?
————————— = l" —_—— =
HandlingLink lConsumableLj_nk |
_________ ~ N e
————— T e e e
{Quanti tyLink I
__________ ~

Figure 3.7 Structure of the abstract ResourceLink types

Like Resource elements, ResourceLink elements are an abstract data type. The class tree of abstract
ResourceLink elements is further subdivided into classes defined by the Class attribute of the resource that it
references. Individual instances of ResourceLink elements are named by appending the suffix “Link” to the name
of the referenced resource. For example the link to a Component resource is entitled ComponentLink and the
link to a ScanParams resource is entitled ScanParamsLink. The following eight abstract resource link classes
exist:

e ParameterLink e HandlingLink

e ImplementationLink e PlaceHolderLink
e ConsumableLink e IntentLink

e QuantityLink

Each listed class name is described in greater detail in the sections that follow. The following figure shows the
abstract resource link types derived from the abstract ResourceLink type.
The following table lists the contents of a ResourcelLinkPool element.

Table 3-17 Contents of the ResourceLinkPool element

Name Data Type Description
ResourceLink * Element List of ResourceLink elements. The ResourceLink elements are abstract and
are a placeholder for any resource link element.

The following table lists the possible contents of all ResourceLink elements.

Page 65

Name
CombinedProcessind
ex?

Page 66

Table 3-18 Contents of the abstract ResourceLink element

Data Type
IntegerList

‘ Description

Combined nodes contain input resources from multiple process nodes.
The CombinedProcessindex attribute specifies the indices of
individual processes in the Types attribute to which a ResourceLink
in a Combined node belongs. Multiple entries in CombinedProcess-
Index specify that the ResourceLink is used by the respective multiple
processes in the Combined node.

CombinedProcessTyp
e?

IDeprecated in JDF 1.1|

NMTOKEN

Combined nodes contain input resources from multiple process nodes.
The CombinedProcessType attribute specifies the name individual
process to which a ResourceLink in a Combined node belongs. Must
match one of the entries in the Types attribute of the node. Replaced by
CombinedProcessindex in JDF 1.1.

DraftOK ?

boolean

If true, the process may commence with a draft resource. Default = false

PipePartIDKeys ?

enumerations

Defines the granularity of a dynamic pipe for a partitioned resource.
For instance, a resource may be partitioned by sheet, surface and
separation (resource attribute PartiIDKeys = SheetName Side
Separation), but pipe requests should only be issued once per surface
(resource link attribute PipePartIDKeys = SheetName Side). The
contents of PipePartIDKeys must be a subset of the PartIDKeys
attribute of the resource that is linked by this ResourceLink. 1f
PipePartIDKeys is not specified, it defaults to the implied or explicit
value of PipePartIDKeys of the referenced resource.

PipeProtocol ?

NMTOKEN

Defines the protocol use for pipe handling. JMF is the only non-
proprietary piping protocol that is supported. Proprietary pipe protocols
may be specified in addition to those defined below but will not
necessarily be interoperable. Allowed values include:

JMF — JMF based PipePush / PipePull messages.

None — No pipe support.

If PipeURL is specified and PipeProtocol is not specified, JMF is
assumed.

PipeURL ?

URL

Pipe request URL. Dynamic pipe requests from this end of a pipe
should be made to this URL." Note that this URL is only used for
initiating pipe requests. Responses to a pipe request are issued to the
URL that is defined in the PipePush or PipePull message. For details
on using PipeURL, see Section 4.3.2.

ProcessUsage ?

string

Identifies the resource usage in the process if multiple resources of the
same type are required. For example, this attribute appears when two
components—one Cover and one BookBlock—are used in
AdhesiveBinding. The allowed values of ProcessUsage are defined
in the appropriate process descriptions in Chapter 6 Processes.

rRef

IDREF

Link to the target resource.

rSubRef ?
IDeprecated in JDF 1.2]

IDREF

Link to a subelement within the resource.

In JDF 1.2 and beyond, Resource Links should only reference resources
that are present in a ResourcePool.[RP102]

Usage

enumeration

Resource usage within this JDF node. Possible values are:
Input — The resource is an input.

' Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem
counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without
having to include the node that describes the other end in the spawned file.

Page 66

Page 67

Name Data Type \ Description

Intermediate — The resource is an intermediate resource in a Combined
process. This Usage is used to define properties such as orientation of
an exchange resource within a Combined process. The
CombinedProcessindex of the ResourceLink applies to the process
that consumes the exchange resource as input. Usage="Intermediate”

must not be specified in JDF nodes other than Combined process nodes.
iﬂ[Rmoa

Output — The resource is an output.

AmountPool ? element Definition of partial amounts and pipe parameters for this
_ ResourceLink. The allowed contents of the AmountPool are described

for the various types of resource links in the sections below. If
AmountPool is specified, none of the Amount related attributes defined
in AmountPool/PartAmount must be specified in the
ResourceLink.[RP104]

Part * element The Part elements identify the parts of a partitioned resource that are
referenced by the ResourceLink. The structure of the Part element is
defined in Table 3-26 Contents of the Part element. For details on
partitioned resources, see Section 3.9.2.

The following table lists the generic contents of an AmountPool element. Further parameters of the AmountPool
are described in the sections below.
Table 3-19 Contents of the AmountPool element

Data Type Description
PartAmount * | element Element that defines the amounts and pipe parameters for a partitioned resource.
- The contents of a PartAmount depends on the type of the ResourceLink.

The following table lists the generic contents of a PartAmount element. Further parameters of the PartAmount are
described in the respective sections below (Table 3-21 Contents of the abstract ImplementationLink or PartAmount
element and Table 3-22 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool
element). Note that PartAmount inherits values from its parent ResourceLink.

Table 3-20 General contents of the PartAmount element

Name Data Type Description
DraftOK ? boolean If true, the process may commence with a draft resource partition.
PipeURL ? URL Pipe request URL for this partition. Dynamic pipe requests from this

end of a pipe should be made to this URL.> Note that this URL is only
used for initiating pipe requests. Responses to a pipe request are issued
to the URL that is defined in the PipePush or PipePull message.

For details on using PipeURL, see Section 4.3.2.

Part element Specifies the selected part that the PartAmount is valid for. This must be

a leaf partition of the resource.

2 Note that in most cases this is the URL of the controller of the other end of the pipe. This may seem
counterintuitive, but it allows parallel spawning and merging of processes that represent a dynamic pipe without
having to include the node that describes the other end in the spawned file.

Page 67

Page 68

3.8.1 Links to Parameter Resources

Parameter resources are linked by an instance of a ParameterLink element. These elements contain no further
attributes or elements besides those found in the abstract ResourcelLink element.

3.8.2 Links to Implementation Resources

Implementation resources are linked by an instance of an ImplementationLink element. Using the resource
attributes, the link may specify whether the implementation is a recommendation that may be ignored or a request
that must be fulfilled. For example, the job may contain a request that the job be run by a specific, experienced
operator. If the value or the Recommendation is true and that operator is ill, he may be replaced by a less
experienced operator. If, on the other hand, a product could be created on a device that theoretically can do the job
but does not produce sufficient quality, and if it is certain that customer will reject inferior quality,
Recommendation should be set to false.

Since implementation ResourceLinks define the usage of a specific device during the course of a job,
situations can arise where that resource is not required during the whole processing time. For instance, a forklift that
only has to transport the completed components is not required to be available during the entire process run, only
during the times when it is needed. This means that, contrary to the general rule that all resources must be Available
for node execution to commence, a node may commence when implementation resources are still /nUse by other
processes if Start or StartOffset are specified. ImplementationLink elements always have a Usage of Input.

Table 3-21 Contents of the abstract ImplementationLink or PartAmount element

Name Data Type " Description
Duration ? duration Estimated duration during which the resource will be used.
Recommendation ? | boolean If true and the request cannot be fulfilled, the change may be logged as a

Modified Audit and the job may continue. If false, an error occurs if the
request is not fulfilled.

Default = false

Start ? dateTime Time and date when the usage of the implementation resource starts.

StartOffset ? duration Offset time when the resource is required after processing has begun. If
both Start and StartOffset are specified, Start has precedence.

The following example shows how the operator Smith is linked to a ConventionalPrinting process as the only valid
operator:

<ResourcePool>
<Employee PersonallID=”007"” ID="L1" Class="Implementation”>
<Person FamilyName="Smith” JobTitle="Press Operator”>
</Employee>
</ResourcePool>

<ResourcelLinkPool>
<EmployeeLink Recommendation="false" Usage="Input" rRef="L1"/>
</ResourcelLinkPool>

3.8.3 Links to Physical Resources

The physical resources that fall into the Consumable, Quantity, and Handling classes are linked, predictably, by the
appropriate instances of ConsumableLink, QuantityLink, or HandlingLink resource link elements. Just as
physical resources inherit the contents of the abstract resource element, physical resource links inherit the contents
of the abstract resource link element. They may, however, contain additional contents. These optional attributes are
described in Table 3-22, below. The attributes in Table 3-22 may occur either directly in the physical ResourceLink
or in AmountPool and PartAmount elements of a resource link.

It is important to note that the order of occurrence of links to physical resources may be significant — most
specifically with QuantityLinks. For example, a Gathering process might have among its inputs, links to three

Page 68

Page 69

component resources. The order of these links indicates the order in which the components should occur in the new,
gathered output component.

Table 3-22 Additional contents of the abstract physical ResourceLink and PartAmount or AmountPool element

Name
Amount ?

Data Type
number

Description

For a link with a Usage of ‘Input’, specifies the amount of the resource that is
required by the process, in units as defined in the resource.

For a link with a Usage of ‘Output’, specifies the amount of the resource that is to
be produced by the process, in units as defined in the resource.

Allows resources to be only partially consumed or produced (see Section 3.9.1
Resource Amount).

CumulativeAmount
[RP105]7

number

Total amount of the resource that has been produced (in a ResourceLink
with Usage="Output”) or consumed (in a ResourceLink with
Usage="Input”) by this node in every execution. [RP106]

Orientation ?

enumeration

Named orientation describing the transformation of the orientation of a physical
resource relative to the ideal process coordinate using this resource as input or
output. Allowed values are:

Rotate0:
Rotate90:
Rotatel80:
Rotate270:
Flip0.
Flip90:
Flip180:
Flip270:

For details, of the semantics of the enumeration, see Table 2-3. This is needed to
convert the coordinate system of the resource to the coordinate system of the
process. Agents should supply one of Orientation or Transformation for
resources where they are relevant, e.g., Component. When neither Orientation
or Transformation are present, the orientation of the resource is system specified.

If Orientation is specified for an output resource, the node that processes the
physical resource should manipulate the resource in such a way as to reflect the
transformation. The coordinate system of the resource itself is NOT modified.
Only one of Orientation or Transformation may be specified in one
ResourceLink.

PipePause ?

number

Parameter for controlling the pausing of a process if the resource amount in the
pipe buffer passes the specified value. For details on using PipePause, see
Section 4.3.2.

PipeResume ?

number

Parameter for controlling the resumption of a process if the resource amount in
the pipe buffer passes the specified value. For details on using PijpeResume, see
Section 4.3.2.

RemotePipeEndPa
use?

number

Parameter for controlling the pausing of a process at the other end of the pipe if
the resource amount in the pipe buffer passes the specified value. For details on
using RemotePipeEndPause, see Section 4.3.2.

RemotePipeEndR
esume ?

number

Parameter for controlling the resumption of a process at the other end of the pipe
if the resource amount in the pipe buffer passes the specified value. For details on
using RemotePijpeEndResume, see Section 4.3.2.

Page 69

Page 70

Name Data Type Description \
Transformation ? matrix Matrix describing the transformation of the orientation of a physical resource
_ relative to the ideal process coordinate using this resource as input or output. This

is needed to convert the coordinate system of the resource to the coordinate
system of the process. Agents should supply one of Orientation or
Transformation for resources where they are relevant, e.g., Component. When
neither Orientation or Transformation are present, the orientation of the resource
is system specified.

If Transformation is specified for an output resource, the node that processes the
physical resource should manipulate the resource in such a way as to reflect the
transformation. The coordinate system of the resource itself is NOT modified.

The following example shows an InkLink with an AmountPool.

<ResourcePool>
<Ink ID="Link0015" Brand="NoName" Class="Consumable" Locked="false"
Status="Available" PartIDKeys="Separation">
<Ink ColorName="Cyan" Separation="Cyan"/>
<Ink ColorName="Magenta" Separation="Magenta"/>
<Ink ColorName="Yellow" Separation="Yellow"/>
<Ink ColorName="Black" Separation="Black"/>
<Ink ColorName="Heidelberg Spot Blau" Separation="Heidelberg Spot Blau"/>
</Ink>
</ResourcePool>
<ResourcelLinkPool>
<InkLink rRef="Link0015" Usage="Input">
<AmountPool>
<PartAmount Amount="1000">
<Part Separation="Cyan"/>
</PartAmount>
<PartAmount Amount="1200">
<Part Separation="Magenta"/>
</PartAmount>
<PartAmount Amount="700">
<Part Separation="Yellow"/>
</PartAmount>
<PartAmount Amount="3000">
<Part Separation="Black"/>
</PartAmount>
<PartAmount Amount="300">
<Part Separation="Heidelberg Spot Blau"/>
</PartAmount>
</AmountPool>
</InkLink>
</ResourceLinkPool>

3.8.4 Links to PlaceHolder Resources

PlaceHolder resources are linked by a PlaceHolderLink element. PlaceHolder links, used together with the
PlaceHolderResource resource, can be employed to predefine a skeleton of a processing network consisting of
process group nodes without knowing the exact nature of the interchange resources. For instance, although the
deadlines for the job may be known, it may not be known whether a press run will be defined for a digital press or a
conventional press.

3.8.5 Links to Intent Resources
Intent resources are linked by an instance of a IntentLink element. They have no additional parameters.

Page 70

Page 71

3.8.6 Inter-Resource Linking Using ResourceRef

In some cases, it is necessary to reference resource elements directly from other resources in order to reuse
information. These links are abstract ResourceRef elements. The ResourceRef’s name is generated by
appending the string “Ref” to the element name. Candidate elements for inter-resource linking have a data type of
refelement in the content description tables of this chapter and Chapter 7. The following table defines the attributes
of the abstract ResourceRef element (see also Figure 3.4 and ResourceElement in Table 3-12). The
ResourceElement is defined in Table 3-23 Contents of the abstract ResourceElement

Table 3-23 Contents of the abstract ResourceElement

Name Data Type Description

ID? ID Unique identifier of a resource element.

DeErecated 15] In JDF 1.2 and beyond, ResourceRef and ResourceLink elements should only
IDF 1.2[rP107] reference resources that are present in a ResourcePool. Therefore elements

that are defined locally within a resource should not be referenced and should
not contain an ID.[RP108]

Table 3-24 Contents of the abstract ResourceRef element

Data Type Description

rRef IDREF Reference to the resource.

rSubRef ? IDREF Reference to a subelement of the resource.

Deﬁrecated 1§| In JDF 1.2 and beyond, ResourceRef elements should only reference resources
TDF 1.2|[RP109] that are present in a ResourcePool.[RP110]

Part ? element Definition of the partition that this ResourceRef references. This must be a

_ leaf partition of the resource.

In order to enable spawning and merging without having to scan every single resource, inter-resource links must be
specified in the rRefs attribute of the resource. In the case of a link to a resource subset, the rRefs attribute contains
a reference to the atomic resource. Even if a resource is linked more than once, one occurrence of that resource in
the rRefs array is sufficient.

The Part element in a ResourceRef defines the part of the target that this ResourceRef references. If both the
resource that contains ResourceRef element and the target resource are partitioned, the ResourceRef does NOT
implicitly reference the part of the target with the same partitioning attributes, but rather the parts of the target
resource that are explicitly specified by the Part element within the ResourceRef.

When a ResourceRef references a partitioned resource node that is not a resource leaf, the children of the
referenced Resource are ignored. Otherwise, the referenced structure would be invalid when inlined. Thus the
following example equivalence applies:

ResourceRef example with partition:
<Media ID="MedialD” PartIDKeys="Location” Size="72 72">
<Comment Name="foo”>bar</Comment>
<Media Location="desk”>
<Media Location="drawer”>
</Media>

<Sheet>

Page 71

Page 72

<MediaRef rRef="MedialD”/>
</Sheet>

Valid inlined ResourceRef example with partition:
<Sheet>
<Media ID="MedialID” Size="72 72">
<Comment Name="foo”>bar</Comment>
</Media>
</Sheet>

Invalid inlined ResourceRef example with partition:
<Sheet>
<Media ID="MedialD” PartIDKeys="Location” Size="72 72">
<Comment Name="foo”>bar</Comment>
<Media Location="desk”>
<Media Location="drawer”>
</Media>
</Sheet>[RP111]

ResourceRef elements may also occur in the Nodelnfo and Customerinfo element of a JDF node. Resource
elements that are referenced must reside in a ResourcePool. The restrictions on locations of Resource elements
described in section ##ref 3.7.2 that apply to resource links similarly apply to refElements.[RP112]

Elements within a resource, i.e. not direct children of the ResourcePool, may also contain an /D attribute (see
Table 3-23 Contents of the abstract ResourceElement). These elements are denoted as ResourceElement. These
elements may be explicitly referenced by a ResourceRef.

Prior to JDF 1.2, the ResourceRef element had an optional rSubRef attribute that contained an IDREF to the
ID of the ResourceElement within the resource.

In some cases, it seemed desirable to define a ResourceElement that was not explicitly linked by a Node
directly within a ResourcePool as a Resource. These Resources were referenced only by other resources which
contained ResourceRef elements pointing to these. The ResourceElements instantiated as a Resource had to
contain the required attributes of abstract resources and have a Class="Parameter". The following example
demonstrated inter-resource linking to resource Elements.[RP113]

<ResourcePool>
<Layout rRefs="resl res2"><!—-This is a Resource-->

<!—These are ResourceRefs-->

<SurfaceRef rRef="resl" rSubRef="surfl"/>
<SurfaceRef rRef="res2" rSubRef="surf2"/>
<SurfaceRef rRef="resl" rSubRef="surfl"/>

<!-- another link to the same resource -->
</Layout>
<Sheet ID="resl"><!—-This is a Resource-->
<Surface ID="surfl" .. /> <!—This 1is a ResourceElement-->
</Sheet>
<Sheet ID="res2"> <!—-This is a Resource-->
<Surface ID="surf2" .. /> <!—This is a ResourceElement-->
</Sheet>
</ResourcePool>

3.8.6.1 Status of Resources That Contain rRef References

The Status of a resource that contains an rRef attribute is defined by the lowest Status of all recursively referenced
resources. The ordering is defined as:

Incomplete InUse

Unavailable Drafi

Page 72

Page 73

Complete Available

Thus, if any referenced resource has a Status of Incomplete, the complete resource has a calculated Status of
Incomplete, even though its own Status attribute may be Unavailable, Draft, Available etc.

3.8.6.2 Aliinment of ResourceLink and ResourceRef

ResourceRef elements must not contain any of the attributes and elements that may be specified in the
ResourceLink as defined in chapter 3.8 Resource Links. The value of these properties is implied from the value of
the properties for the appropriate part in the AmountPool of the ResourceLink of the node. The following example
illustrates the alignment of a MediaLink and MediaRef in a DigitalPrinting node.

<JDF ID="n20020626134204" Type="DigitalPrinting" xmlns="http://www.CIP4.org/JDFSchema 1 1"
Status="Waiting" Version="1.1">
<ResourcePool>
<!—Media is partitioned so that it can be referenced from the AmountPool -->
<Media ID="r0006" Class="Consumable" Status="Available" PartIDKeys="RunlIndex">
<Media RunIndex="0 -1"/>
<Media RunIndex="1~-2"/>
</Media>
<DigitalPrintingParams ID="r0007" Class="Parameter" rRefs="r0006" Status="Available"
PartIDKeys="RunIndex">
<DigitalPrintingParams RunIndex="0 -1">
<!-- PartAmount with <Part RunIndex="0 -1"/> contains the partition details for this
MediaRef -->
<MediaRef rRef="r0006">
<Part RunIndex="0 -1"/>
</MediaRef>
</DigitalPrintingParams>
<DigitalPrintingParams RunIndex="1~-2">
<!-- PartAmount with <Part RunIndex="1~-2/> contains the partition details for this
MediaRef -->
<MediaRef rRef="r0006">
<Part RunIndex="1~-2"/>
</MediaRef>
</DigitalPrintingParams>
</DigitalPrintingParams>
</ResourcePool>
<ResourcelLinkPool>
<MediaLink rRef="r0006" Usage="Input">
<!-- the AmountPool contains the Resourcelink partition details -->
<AmountPool>
<PartAmount Usage="Input" Orientation="F1lipl80">
<Part RunIndex="0 -1"/>
</PartAmount>
<PartAmount Usage="Input" Orientation="RotateO">
<Part RunIndex="1~-2"/>
</PartAmount>
</AmountPool>
</MedialLink>
<DigitalPrintingParamsLink rRef="r0007" Usage="Input"/>
</ResourceLinkPool>
</JDF>

3.9 Subsets of Resources

In many cases, a set of similar resources—such as separation films, plates, or RunList resources—is produced by one
process and consumed by another. When this occurs, it is convenient to define one resource element that describes the
complete set and allows individual subsets to be referenced. This mechanism also removes process ambiguity if
multiple input resource links and multiple output resource links exist that must be unambiguously correlated.

In other cases, there can be a need to change some attribute of a parameter resource for some subset of the
processing to be done by a device (for instance, when printing a document using DigitalPrinting, it would be a

Page 73

Page 74

common application to change the dimensions of the media to be selected based on the actual media box changes in a
PDF file).

Resource elements and ResourceLink elements have optional attributes that enable an agent to specify an
explicit part of a structured resource. There are two ways to reference a subset of a resource. The first is by
quantity, by specifying an Amount in a ResourceLink that is less than the Resource’s Amount. The second is to
select certain parts of a partitioned resource by supplying a filtering Part element in the ResourceLink.

3.9.1 Resource Amount

Yet another flexible feature of resources is that they may be only partially consumed. For example, in a scenario in
which various versions of a product share identical parts—such as versioned books that all have the same cover—
each version will only use as many copies of the cover as it needs to fulfill its job requirement, even though all of
the covers can be printed in one step for all versions. This feature is specified in the Amount attribute of the
resource links and allows multiple JDF nodes to share resources. It allows both the sharing of output resources (as
when a binding process consumes identical sheets from multiple press lines) and the sharing of input resources (as
when the covers for multiple jobs are identical and are all printed in one press run).

The Amount attribute of a physical resource element contains the actual amount of a given resource. It is
adjusted by the production or consumption amount of every process that is executed, and refers to that amount in the
corresponding physical resource link element. Thus the value of the Amount attribute of a resource that is
consumed as an input should be reduced by the amount that is consumed. It is up to the agent that writes a JDF job
to ensure that the Amount attributes of resources and the resource links that reference them are consistent. The
units used in the Amount attribute of a physical resource link element is defined by the unit of the resource element
to which the link refers. The definition of Amount for partitioned resources is explained in detail in Section 3.9.2
Description of Partitionable Resources.

Note that for resources which are the output of processes, the Amount attribute on the ResourceLink determines
the quantity of the resource to be produced. For example, for a DigitalPrinting process that included a RunList as its
input with 16 pages to be printed and a ComponentLink to its output, the Amount and AmountProduced attributes
[RP114]attribute would indicate the number of copies of those 16 pages that the process would produce.

3.9.1.1 Specifying [rRr115JAmount for a partially completed process

A process may be interrupted before the requested amount of output has been produced. When the job is resent from
the controller to the Device, only the rest Amount must be produced by the Device. The following table summarizes
the values of the Amount and AmountProduced attributes in the Output Component, the CumulativeAmount of
ComponentLink and the Resource audit in various steps of the process:

Process Step Component- following Component Component-
Link Input Amount Link Amount
CumulativeA Component-
mount Link
CumulativeA
mount
Original JDF, no processing has commenced. 0 0 0 100000
Unavailable
Break after producing 30000 Copies 30000 0 30000 100000
Available
Break after producing additional 40000 Copies 70000 0 70000 100000
Available
Completed 100000 0 100000 100000
Available

Consumption of the Output by a subsequent process

Page 74

Page 75

Process Step Component- = following Component Component-
Link Input Amount Link Amount
CumulativeA Component-
mount Link
CumulativeA
mount
A following process consumes 50000 Copies 100000 50000 50000 100000
Available

Additional Copy Request

20000 additional Copies are requested 100000 50000 50000 120000
Available

The 20000 Copies are produced 120000 50000 70000 120000
Available

Parallel Production by a second device

30000 additional Copies of the same resource are requested froma | 0 50000 70000 30000

different node Available

The 30000 Copies are produced 30000 50000 100000 30000
Available

Parallel Production by first device

40000 additional Copies of the same resource are requested from a 120000 50000 100000 120000
different node Available
The 40000 Copies are produced 160000 50000 140000 160000
Available
.[RP116]

3.9.2 Description of Partitionable Resources

Printing workflows contain a number of processes that are repeated over a potentially large number of individual files,
sheets, surfaces or separations. In order to define a partitioned resource in a concise manner without having to create a
large number of individual nodes and resources, a set of resources may be partitioned by factoring them by one or more
attributes. The common elements and defaults are placed in the parent element, while partition-specific attributes and
overrides are placed in the child elements. This saves space. Also, by providing a single parent ID for the resources, it
allows easy access to the entire resource, or iteration over each part.

To reference part of a resource, a ResourceLink references the parent resource, and supplies a Part element that contains
an actual value for a partition. The result is all the child elements with matching partition values, including common
values and defaults from the parent resource. If PartUsage = “Implicit”, the parent attributes are returned if there is no
matching partition.

A partitionable resource may contain [RP117]nested elements, each with the same name as the resource. The part-
independent resource elements and attributes are located in the root of the resource, while the partition-dependent elements
are located in the nested elements. Thus one individual part is defined by the convolution of the partition-independent
elements and attributes, with the elements and attributes contained in the appropriate nested elements. The attributes of
nested part elements may be overwritten by the equivalent attributes in descendent parts. If a leaf contains elements that
may multiply, and additional elements with the same name exist in nodes that are closer to the root, only the elements in
the leaf are valid for the respective part. For example, the following SeparationSpec is two color duo-tone (only Black and
SpotGreen) in the part with PageNumber=1:

<LayoutElement PartIDKeys="PageNumber">

Page 75

Page 76

<SeparationSpec Name="Cyan"/>

<SeparationSpec Name="Magenta"/>

<SeparationSpec Name="Yellow"/>

<SeparationSpec Name="Black"/>

<FileSpec (..)/>

<LayoutElement PageNumber="0" (..)/>

<LayoutElement PageNumber="1" (..)>
<SeparationSpec Name="Black"/>
<SeparationSpec Name="SpotGreen"/>

</LayoutElement>

</LayoutElement>

3.9.2.1 Amount in Partitionable resources[rriis]

The Amount attribute of a partitioned resource is treated formally exactly in the same manner as any other attribute.
This implies that the amount specified refers to the amount defined by one leaf and not to the amount defined by the
sum of leaves in a branch. The Amount attribute defined in the example below is, therefore, two, even though 24
physical plates are described.

The following example defines two sets of 12 plates for two sheets with three surfaces. Each has a common
brand attribute called “Gooey”. Each individual separation has its own ProductID. Furthermore, the Status
attribute varies from part to part. For example, if a yellow plate breaks, only it will need to be remade and therefore
set to Unavailable; the others, meanwhile, may remain Available.

<ExposedMedia Class="Handling" Brand="Gooey" ID="L1" Status="Available"
PartIDKeys="SheetName Side Separation" Amount="2">
<Media MediaType="Plate” Dimension="500 600”/>
<ExposedMedia SheetName="S1">
<ExposedMedia Side="Front">
<ExposedMedia Separation="Cyan" ProductID="S1FCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S1FMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S1FYPlateJ42"
Status=“Unavailable"/>
<ExposedMedia Separation="Black" ProductID="S1FKPlateJd42"/>
</ExposedMedia>
<ExposedMedia Side="Back">
<ExposedMedia Separation="Cyan" ProductID="S1BCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S1BMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S1BYPlateJ42"/>
<ExposedMedia Separation="Black" ProductID="S1BKPlateJ42"/>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia SheetName="S2" Side="Front">
<ExposedMedia Separation="Cyan" ProductID="S2FCPlateJ42"/>
<ExposedMedia Separation="Magenta" ProductID="S2FMPlateJ42"/>
<ExposedMedia Separation="Yellow" ProductID="S2FYPlateJ42"/>
<ExposedMedia Separation="Black" ProductID="S2FKPlateJ42"/>
</ExposedMedia>
</ExposedMedia>

3.9.2.2 Relating PartIDKeys and Partitions

The PartIDKeys attribute describes the partition keys that may occur in a partitioned resource. The sequence and
number of keys is restricted in order and cardinality to ensure interoperability. The first entry in the PartIDKeys list
defines the partition closest to the root, the next entry defines the next intermediate partition node and so forth until
the last entry, which defines the partition leaves. Each partition key must occur exactly once in the PartIDKeys list.
Note that some of the restrictions specified in this section were assumed to be in place in versions before JDF 1.2
but were not explicitly stated in the specification.

3.9.2.2.1 Incomplete Partitions
Partitioned resources may be partitioned by a restricted subset of keys in the PartIDKeys list. Keys from the back of
the list may be omitted in individual partitions. If a key is omitted all following keys must also be omitted.

Page 76

Page 77

The following example demonstrates a legal incomplete partition:
<Preview PartIDKeys= “PreviewType Separation”>
<Preview PreviewType="Separation”>

<Preview Separation="Cyan”/>
<Preview Separation="Magenta”/>
</Preview>
<Preview PreviewType="Thumbnail”/>
</Preview>

The following example demonstrates an illegal incomplete partition since the omitted keys are not at the end of the
PartIDKeys list:
<Preview PartIDKeys= “PreviewType Separation”>
<Preview Separation="Cyan”/>
<Preview Separation="Magenta”/>
</Preview>

3.9.2.2.2 Multiple Keys per partitioned Leaf or Node
Only one partition key must be specified per leaf or node. This allows XPath-type searches on partitioned leaves.
The following example demonstrates a legal partition:
<Preview PartIDKeys= “PreviewType Separation”>

<Preview PreviewType="Separation”>

<Preview Separation="Cyan”/>

</Preview>

</Preview>

The following example demonstrates an illegal incomplete partition since more than one partition key is specified in
the leaf:
<Preview PartIDKeys= “PreviewType Separation”>
<Preview PreviewType="Separation” Separation="Cyan”/>
</Preview>[RP119]

3.9.2.2.3 Degenerate Partitions
A partitionable resource must not contain partition keys in the root. Mapping partitioned parameters to non-
partitioned resources is achieved by partitioning the Resource with exactly one leaf. The following example
specifies that only c¢1 must be folded:
<Component PartIDKeys="SheetName” ID="cl” Class="Quantity”/>
<Component SheetName="Sheet 1”/>
</Component>
<Component PartIDKeys="”SheetName” ID="c2” Class="Quantity”/>
<Component SheetName="Sheet 27/>
</Component>
<FoldingParams PartIDKeys="SheetName” NoOp="true” ID="fold”>
<FoldingParams SheetName="Sheet 1” NoOp="false”/>
</FoldingParams>

The following example is NOT valid:

<Component PartIDKeys="SheetName” SheetName="Sheet 1” ID="cl”

Class="Quantity”/>

<Component PartIDKeys="SheetName” SheetName="Sheet 2” ID="c2”

Class="Quantity”/>

<FoldingParams PartIDKeys="SheetName” NoOp="true” ID="fold”>
<FoldingParams SheetName="Sheet 1” NoOp="false”/>

</FoldingParams>[RP120]

Page 77

Page 78

3.9.2.3 Partitioning of Resource sub-Elements

[RP121]Only resources must [RP122]be partitioned. If a resource contains subelements, the subelements must NOT be
partitioned. Subelements must be always specified completely in that part where they occur. The content of
subelements is not convoluted with the content of subelements in parts closer to the root.

Five examples are provided below. The first and the fourth example are valid, the second third, and fifth are
invalid. In the first example, the ExposedMedia resource is partitioned:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<Media MediaType="Film" Brand="foo"/>
<ExposedMedia Separation="Cyan"/>
<ExposedMedia Separation="Magenta">
<Media MediaType="Film" Brand="bar"/>
</ExposedMedia >
</ExposedMedia >

In this invalid example #2, the Media in the leaves is not complete because it does not contain the MediaType
attribute. MediaType cannot not be derived from the Media part in the root element:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<Media MediaType="Film”/>
<ExposedMedia Separation="Cyan”>
<Media Brand="foo”/>
</ExposedMedia >
<ExposedMedia Separation="Magenta’”>
<Media Brand="bar”/>
</ExposedMedia >
</ExposedMedia >

In this invalid example #3, Media is a subelement that must NOT be partitioned:

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<Media MediaType="Film”>
<Media Brand="foo” Separation="Cyan”>
<Media Brand="bar” Separation="Magenta” />
</Media >
</ExposedMedia >

Partitioning may be combined with inter-resource links, i.e. RefElements. In the following valid example #4, each
MediaRef is equivalent to an in-lined leaf with the explicit Part elements to define the partition, i.e. it is equivalent
to the valid example #1.

<Media ID="MedialD” MediaType="Film” PartIDKeys="Separation">
<Media Separation=”Cyan” Brand="foo”/>
<Media Separation="Magenta” Brand="bar”/>
</Media>
<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<ExposedMedia Separation="Cyan”>
<!—equivalent to <Media MediaType="Film” Brand="foo”/> -->
<MediaRef rRef="MedialID”>
<Part Separation=”Cyan”/>
</MediaRef>
</ExposedMedia>
<ExposedMedia Separation="Magenta’”>
<!—equivalent to <Media MediaType="Film” Brand="bar”/> -->
<MediaRef rRef="MedialID”/>
<Part Separation="” Magenta”/>
</MediaRef>
</ExposedMedia >
</ExposedMedia >

Page 78

Page 79

In this invalid example #5, MediaRef does not reference the leaves of Media, but rather the root of Media. It is
equivalent to the invalid example #3.

<Media ID="MedialD” MediaType="Film” PartIDKeys="Separation">
<Media Separation=”Cyan” Brand="foo”/>
<Media Separation=”Magenta” Brand="bar”/>

</Media>

<ExposedMedia ID="L1" Status="Available" PartIDKeys="Separation" .. >
<MediaRef rRef="MedialID”>

</ExposedMedia >

3.9.2.4 Additional Attributes for use with partitioned Resourcesirri23]

In addition to the usual resource attributes and elements, the partitionable Resource element has partition-specific
attributes and elements in its root. Specifying Part/DKeys in the root defines a partitioned [RP124]resource. Further
attributes are listed in the following table:

Table 3-25 Contents of the partitionable Resource element

Name Data Type Description

PartIDKeys ? enumerations List of attribute names that are used to separate the individual parts.
PartIDKeys also defines the sequence from root to leaf in which the

F PartIDKeys must occur in the partitioned resource. Each entry in the

PartIDKeys list must occur only once. PartIDKeys must not be specified
below the root of a partitioned resource, i.e. in an intermediate node or
leaf. [RP125]Possible values are:

BinderySignatureNa PageNumber SetDoclndex
me[RP126] PartVersion SetIndexSetRuniIndex
BlockName PreflightRule[RP129] Sheetlndex
BundleltemIndex - PreviewType SheetName
Celllndex [RP127] RibbonName Side
Condition[RP128] Run SignatureName
DocCopies Runindex TileID
Doclndex RunTags WebName
DocRunIndex RunPage
DocSheetlndex Sectionlndex
FountainNumber [RP130]Separation
LayerIDs
Location
Option
For details, see Table 3-26.
PartUsage ? enumeration Description of the interpretation of partitions. One of:
- Explicit — Require explicit partition matches. All referenced partitions

referenced in Part must exist, otherwise it is an error. The default attributes
are returned, overridden by the partition’s values, if found. This is the
default behavior.

Implicit — Allow sparse overrides of default values. The referenced partition
is not required to exist. The default attributes are returned, overridden by the
partition’s values, if found.

PartUsage must only be specified in the root of a partitioned resource.[RP131]

For details on PartUsage, see section 3.9.3.2, Implicit and Explicit
PartUsage in Partitioned Resources.

PipePartIDKeys ? | enumerations Defines the granularity of a dynamic pipe for a partitioned resource. For
- instance, a resource may be partitioned by sheet, surface and separation
(resource attribute PartIDKeys = SheetName Side Separation), but pipe

Page 79

Name

Data Type

Page 80

Description

requests should only be issued once per surface (resource link attribute
PipePartIDKeys = SheetName Side). The contents of PipePartIDKeys
must be a subset of the Part/IDKeys attribute of the resource that is linked
by this ResourceLink. If PipePartIDKeys is not specified, it defaults to
PartIDKeys, i.e. maximum granularity. For details on partitioned resources,
see Section 3.9.2.

Resource *

element

Nested resource elements that contain the appropriate part ID(s). These
elements must be of the same name and type as the root Resource element.
They represent the individual parts or groups of parts.

Partitionable resources are uniquely identified by the attribute values listed in Part/DKeys attributes. The choice of
which attributes to use depends on how the agent organizes the job.

The following table lists the content of a Part element, which contains a set of attributes that have a well
described meaning. Each of the attributes, except Sorting, may be used in the nested resource elements of
partitionable resources as the part ID key (see example above).

Part elements match a given partition when all of the attributes of a Part element match the attributes of the
referenced Resource. This corresponds to Boolean AND operation. If multiple Part elements are defined, the result
is a Boolean OR of the multiple parts.

~ Name
BinderySignatureNa
me ?

Table 3-26 Contents of the Part element

JJData Type

NMTOKEN

~ Description

Name of the BinderySignature used in a ##ref LayoutObject
description.[RP132]

BlockName ?

NMTOKEN

Identifies a CutBlock from a Cutting process. The value of this
attribute must match the value of the [RP133]Name attribute of a
CutBlock.

Celllndex ?

IntegerRangeList

Index of BinderyCells in a LayoutObject or BinderySignature.[RP134]

Condition ?

NMTOKEN

Condition of a physical resource. This key specifies whether a resource
is good or waste and also specifies the various types of waste. For a set
of predefined values, refer to ##ref appendix conditions.[RP135]

DocCopies ?

IntegerRangeList

Identifies a set of document copies to which the partition applies.
DocCopies is a logical reference that may be independent of the
RunList structure and must NOT be used as an explicit partition key
of RunList resources.[RP136]

Docindex ?

IntegerRangeList

The Doclndex attribute selects a set of logical instance documents
from a RunList resource. DocIndex is a logical reference that may
be independent of the RunList structure and must NOT be used as an
explicit partition key for RunList resources.

DocRunindex ?

IntegerRangeList

The DocRunindex attribute selects a set of logical pages from
instance documents of a RunList resource. For example
DocRunindex =0 —1" specifies the first and last page of every copy
of every selected instance document (assuming that additional
partitioning using DocCopies and/or DocIndex is not also specified).
DocRunlindex is a logical reference that may be independent of the
RunList structure and must NOT be used as an explicit partition key
for RunList resources. The index always refers to entries of the
entire RunList and must not be modified if only a part of the RunList
is spawned.

Page 80

Name
DocSheetindex ?

\ \Data Type
IntegerRangeList

Page 81

Description

The DocSheetiIndex attribute selects a set of logical sheets from
individual instance documents. For example DocSheetIndex =0 —
I” specifies the first and last sheet of every selected copy of every
instance document (assuming that additional partitioning using
DocCopies and/or Doclndex is not also specified). DocSheetindex is
a logical reference that may be independent of the RunList structure
and must NOT be used as an explicit partition key for RunList
resources. The index always refers to entries of the entire RunList
and must not be modified if only a part of the RunList is spawned.

FountainNumber ?

integer

Zero based position index of the fountain. Used to partition fountains
along the axis of a roller, may be used for web printing.

ItemNames ?

NMTOKENS

List of items to select from a Bundle. If not specified, all
Bundleltems are processed.

LayerlDs ?

IntegerRangeL.ist

The LayerIDs attribute selects a set layers that are defined by
LayerID. If not specified, all layers are processed.

Location ?

string

Name of the location, e.g.[RP137] in MIS. This part key allows to
describe distributed resources. Note that this name does not define the
location by itself. See section ##ref3.9.2.6 for details on specifying
locations.[RP138]

Option ?

string

Option of an RFQ. Used mainly in Intent resources.

PageNumber ?

IntegerRangeL.ist

Page number in a Component or document, e.g., FileSpec that is
not described as a RunList.

PreflightRule ?

string

Definition of the specific parts of a PRRule used in preflight
applications.[RP139]

PartVersion ?

string

Version identifier, such as the language version of a catalog.

PreviewType ?

enumeration

Type of the preview. Possible values are:
Separation: separated preview in medium resolution.

SeparationRaw: separated preview in medium resolution.with no
compensation.[RP140]

SeparatedThumbNail: Very low resolution separated preview.
ThumbNail: Very low resolution rgb preview.
Viewable: rgb preview in medium resolution.

If both PreviewType and #trefPreview/@PreviewUsage or
#i#refPreviewGenerationParams/@PreviewUsage are specified,
they must match.[RP141]

RibbonName ?

string

A string that uniquely identifies each ribbon. Multiple ribbons are
created out of one web after dividing in case of web printing.

Run?

string

The Run attribute selects a set of partitioned RunList elements from a
RunList resource.

Page 81

Page 82

Name \ \Data Type Description
Runindex ? IntegerRangeL.ist The Runindex attribute selects a set of logical pages from a RunList
resource in a manner that is independent from the internal structure of
the RunList. It contains an array of mixed ranges and individual
indices separated by whitespace. Each range consists of two indices
connected with a tilde (~) and no whitespace. For example,
Runindex =“2~5 8 10 22~-1". Negative numbers reference pages
from the back of a file in base-1 counting. In other words, -1 is the
last page, -2 the second to last, etc. Thus RunIndex = “0~-1" refers to
a complete range of pages, from first to last. Runindex is a logical
reference that is independent of the RunList structure and must NOT
be used as an explicit partition key. The index always refers to entries
of the entire RunList and must not be modified if only a part of the
RunList is spawned.
RunTags ? NMTOKENS List of names in a named RunList. Used to partition resources that
- are linked from processes that also have a RunList as input when the
sequence of the RunList is undefined. The partition is selected if the
explicit or implied (e.g. from the PDL) value of RunTag of the
RunList matches any of the entries in RunTags.
RunPage ? integer Zero based page number. Used when a document / file based RunList
- is broken down into a page based RunList. For instance, a 2 page
document runlist:
<RunList URL="doc.pdf”(...)/>
is split into:
<RunList PartIDKeys="RunPage” (...)>
<RunList URL="doc_page0.pdf” RunPage="0" (...)/>
<RunList URL="doc_pagel.pdf’ RunPage="1"(...)/>
</RunList>
SectionIndex ? IntegerRangeL.ist List of sections in a ##ref LayoutObject.[RP142]
Separation ? string Identifies the separation name. Possible values include:
Composite — Non-separated resource.
Separated — The resource is separated, but the separation definition is
handled internally by the resource, such as a PDF file that contains
Separationinfo dictionaries.
Cyan — Process color.
Magenta — Process color.
Yellow — Process color.
Black — Process color.
Red — Additional process color.
Green — Additional process color.
Blue — Additional process color.
Orange — Additional process color.
Spot — Generic spot color. Used when the exact nature of the spot
color is unknown.
Varnish — Varnish.
Other values may be any separation name defined in the Name
attribute of a Color element in the ColorPool.
When Separation is applied to a ColorantControlLink, it defines an

Page 82

Name

\ \Data Type

Page 83

Description

implicit partition that selects a subset of separations for the process
that is described by the ColorantControl. For details, see ##ref
ColorantControl.[RP143]

SetDoclIndex ?

IntegerRangeL.ist

The SetDoclindex attribute selects a set of logical instance documents
from instance document sets of a RunList resource. For example
SetDocIndex =70 —1” specifies the first and last page of every copy
of every selected instance document set. SetDoclndex is a logical
reference that may be independent of the RunList structure and must
NOT be used as an explicit partition key for RunList resources. The
index always refers to entries of the entire RunList and must not be
modified if only a part of the RunList is spawned.

SetIndex ?

IntegerRangeL.ist

The Setindex attribute selects a set of logical instance document sets
from a RunList resource. Setindex is a logical reference that may be
independent of the RunList structure and must NOT be used as an
explicit partition key for RunList resources. The index always refers
to entries of the entire RunList and must not be modified if only a
part of the RunList is spawned.

SetRunindex ?

IntegerRangeList

The SetRunindex attribute selects a set of logical pages from
instance document sets of a RunList resource. For example
SetRunindex =0 —I” specifies the first and last page of every copy
of every selected instance document set. SetRunindex is a logical
reference that may be independent of the RunList structure and must
NOT be used as an explicit partition key for RunList resources. The
index always refers to entries of the entire RunList and must not be
modified if only a part of the RunList is spawned.

Sheetindex ?

IntegerRangeList

The Sheetindex attribute selects a set of logical sheets from a
RunList resource. In 1-up simplex printing, it is identical to
Runindex. SheetiIndex is a logical reference that is independent of
the RunList structure and must NOT be used as an explicit partition
key.

SheetName ?

string

A string that uniquely identifies each sheet. The value of this attribute
must match the value of the Name attribute of a sheet.

Side ?

enumeration

Denotes the side of the sheet. Possible values are:
Front
Back

If Side is specified, the Part element refers to one surface of the sheet.
If it is not specified, it refers to both sides.

In case of web printing, Front is a synonym for the upper side and
Back for the down side of the web.

SignatureName ?

string

A string that uniquely identifies the signature within the partitionable
resource. The value of this attribute must match the value of the
Name attribute of a Signature.[RP144]

Page 83

Page 84

Name \ \Data Type Description

Sorting ? IntegerRangeList Mapping from the implied partitionable resource order to a process
order. The indices refer to the elements of the complete partitionable
resource, not to the index in the selection of parts defined by the Part
element.' Defaults to “0~-17, i.e. the part order is the same as the
sorting order.

Sorting must NOT be used as a partition key.

SortAmount ? boolean If a sorted resource has an Amount attribute and SortAmount = true,
each resource must be processed completely. If SortAmount = false
(the default), each Part element must be processed the number of
times specified in the Amount attribute before starting the next Part.

SortAmount must NOT be used as a partition key.

TilelD ? XYPair XYPair of integer values that identifies the tile. Tiles are identified by
their X and Y indexes. Values are zero-based and expressed in the PS
coordinate system. So

“0 0” is the lower left tile and “1 0” is the tile next to it on the right.
Tile resources are described in detail in the Section 7.2.214 Tile.

May also be used to identify multiple plates per cylinder. Then the x-
index corresponds to a zero based position index along the axis of a
roller and the y-value to a zero based position index along the
circumference of a roller.

WebName ? string A string that uniquely identifies each web.

If multiple Part ID keys are used in a partitioned resource, for example PartIDKeys="SheetName Side Separation
Location", then all part ID keys must be defined for each leaf in the partitioned resource. In other words, if you
walk from a leaf of a partitioned resource up to the root, each of the part ID keys defined in Part/[DKeys must occur
exactly one time. For example, it is not allowed that only the part ID keys SheetName and Separation be defined for
some leaves in a partitioned resource with PartIDKeys="SheetName Side Separation" defined in the root.

3.9.2.5 Options in Intent Resources

JDF defines Option as a part key in order to specify multiple options e.g. for multiple quotes in a non-redundant
manner. A ResourceLink that links to a resource with an Option partition but has no Part element to choose the
Option, defaults to the root resource.

3.9.2.6 Locations of Physical Resources

Unlike other kinds of resources, physical resources may be stored at multiple, distributed locations. This is specified
by including a Location element [RP145]in the resource element. A Location partition key is provided to define
multiple locations of one resource. The partition key carries no semantic meaning and does not by itself define the
name of a location.

[RP146]

The following example describes a set of plates that are distributed over two locations:

<ExposedMedia ID="L1" PartIDKeys="Location" .. >
<ExposedMedia Amount="42" Location="ddl1[RP147]">
<Location LocationName="Desk Drawer 1" LocID="PP 01234">
<Address .. />
</Location>
</ExposedMedia>
<ExposedMedia Amount="100" Location="dd2[RP148]">

' Note that Sorting is semantically different from the other attributes in this table, as it implies an ordering of parts,
whereas the other attributes define a selection of parts.

Page 84

Page 85

<Location LocationName="Desk Drawer 2" LocID="PP 01235">
<Address .. />
</Location>
</ExposedMedia>

<ExposedMedialink ResourceID="L1" Amount="50" Usage="Input">
<Part Location="dd2"/>

<!-- Note that @Location may but 1is not required to match
Location/@LocationName -->[RP149]
</ExposedMedialLink>

The following example describes two different Media in the top and bottom tray of a LayoutPreparation process.
The Media is selected for the cover and inside pages respectively.

<Media ID="TopMedia" .. >

<Location LocationName="Top"/>
</Media>
<Media ID="BottomMedia" .. >

<Location LocationName="Bottom"/>
</Media>

<LayoutPreparationParams Sides="TwoSidedFlipY” PartIDKeys="RunlIndex” (..)>
<!-- Partition that defines the first and last page of the document -->
<LayoutPreparationParams RunIndex=”"0 1 -2 -1">
<MediaRef rRef="TopMedia”/>
</LayoutPreparationParams>
<!-- Partition that defines the inside pages of the document -->
<LayoutPreparationParams RunIndex="2~-3">
<MediaRef rRef="BottomMedia”/>
</LayoutPreparationParams>
</LayoutPreparationParams>

3.9.3 Linking to Subsets of Resources

An agent can link to a subset of a resource by including a Part element in a ResourceLink element in order to
define a specific subset of a resource. For details of the Part element, please refer to Table 3-26 Contents of the Part
element .

Partitionable hierarchies define an implied ordering of the individual parts. In the example in Section 3.9.2
Description of Partitionable Resources, the first element has a ProductID = S1FCPlateJ42 and the last has a Productld
= S2FKPlateJ42. 1If process ordering of a partitionable resource is important, the Part element of the ResourceLink
must specify a Sorting attribute. If Sorting is not specified, process ordering is arbitrary. If Sorting is specified
multiple times, the resolution of the sorting must be unambiguous.

The Sorting attribute maps the implied part ordering to a specified process ordering in a 0-based list. The first
entry in Sorting defines the first entry to be processed. The following example, using a ResourceLink element,
describes how the plates described in the previous example could be ordered by separation for the first sheet
followed by the complete second sheet, in reverse order (back to front). Each set of two plates, as specified in the
Amount attribute of the resource, would be processed together.

<ExposedMedialLink rRef="L1">
<Part Sorting="0 4 1 5 2 6 3 7 -1~8" SortAmount="false”/>
</ExposedMediaLink>

A partitionable resource may also be split into individual resources by an agent. In this case, one resource must be
created for each individual part or set of parts. For example, a resource that describes a set of films that are also
separated may be split into a set of resources that each describe all separations of a sheet.

Page 85

Page 86

3.9.3.1 Handling Amount in a ResourcelLink to a Partitioned Resource

The Amount specified in a ResourceLink to a physical resource specifies the sum of individual resource partitions.
Individual amounts are specified in the PartAmount elements of the AmountPool. The following example shows
the ResourceLink that refers to the previous example for a total of five plates.

<ExposedMedialLink rRef="L1" Amount="4">
<Part SheetName="S1" Separation="Cyan"/>
<Part SheetName="S1" Separation="Magenta"/>
<AmountPool Amount="1">
<PartAmount>
<Part SheetName="S1" Side="Front" Separation="Cyan"/>
</PartAmount>
<PartAmount>
<Part SheetName="S1" Side="Back" Separation="Cyan"/>
</PartAmount>
<PartAmount>
<Part SheetName="S1" Side="Front" Separation="Magenta"/>
</PartAmount>
<PartAmount Amount="2">
<Part SheetName="S1" Side="Back" Separation="Magenta"/>
</PartAmount>
</AmountPool>
</ExposedMedialink>

3.9.3.2 Implicit and Explicit PartUsage in Partitioned Resources

The PartUsage attribute defines how overspecified ResourceLinks are resolved.

If PartUsage="Explicit”, ResourceLinks that do not point to an explicitely defined partition of a resource are an
error.

If PartUsage="Implicit”, ResourceLinks that do not point to an explicitely defined partition of a resource refer to
the closest matching resource Partition..

<ExposedMedia Class="Handling" Brand="Gooey" ID="XM ID" Status="Available"
PartIDKeys="SheetName Side Separation" PartUsage="Implicit/Explicit” ProductID="Root">
<Media MediaType="Plate” Dimension="500 600”/>
<ExposedMedia SheetName="S1" ProductID="S1">
<ExposedMedia Side="Front" ProductID="S1F">
<ExposedMedia Separation="Cyan" ProductID="S1FC"/>
<ExposedMedia Separation="Magenta" ProductID="S1FM"/>
<ExposedMedia Separation="Yellow" ProductID="S1FY"/>
<ExposedMedia Separation="Black" ProductID="S1FK"/>
</ExposedMedia>
<ExposedMedia Side="Back" ProductID="S1B">
<ExposedMedia Separation="Cyan" ProductID="S1BC"/>
<ExposedMedia Separation="Magenta" ProductID="S1BM"/>
<ExposedMedia Separation="Yellow" ProductID="S1BY"/>
<ExposedMedia Separation="Black" ProductID="S1BK"/>
</ExposedMedia>
</ExposedMedia>
<ExposedMedia SheetName="S2" Side="Front" ProductID="S2F">
<ExposedMedia Separation="Cyan" ProductID="S2FC"/>
<ExposedMedia Separation="Magenta" ProductID="S2FM"/>
<ExposedMedia Separation="Yellow" ProductID="S2FY"/>
<ExposedMedia Separation="Black" ProductID="S2FK"/>
</ExposedMedia>
</ExposedMedia>

<ExposedMedialink rRef="XM ID”>

<Part SheetName=”x”_Side=”y” Separation="z"/>
</ExposedMedialLink>

Page 86

Page 87

The following table shows the ProductID of the Resource Partition that is selected for various values of
SheetName, Side and Separation for PartUsage="Implicit’ and “Explicit’ respectively.

Table 3-28 PartUsage example usages

SheetName Side Separation ‘ Implicit Explicit

- - - Root Root

S1 - - S1 S1

52 - - S2F S2F

S3 - - Root -

S2 Back Cyan Root -

S1 Back Cyan Si1BC SI1BC

S1 Back Orange Si1B -

S1 - Cyan SIBC, SIFC S1BC, SIFC

3.9.3.3 Referencing Partitioned Resources from Nodes That Allow Multiple
ResourceLinks.

Some processes, e.g., Collecting, Gathering allow multiple input resources of the same type. These multiple

input resources may be represented by multiple individual resources or by partitioned resources or by a mixture of

both. If ordering is significant, the order of the leaves in a partitioned resource defines said ordering. The following

examples of gathering three input sheets are equivalent:

Explicit reference of ordered partitioned resources:
<JDF ID="Link0037" Type="Gathering" Status="Waiting">
<ResourcePool>
<GatheringParams ID="Gather(0l" Class="Parameter" Locked="false"
Status="Available"/>
<Component ID="Sheets0l" Class="Quantity" Status="Available"
PartIDKeys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert
sheets">
<Component SheetName="Sheetl"/>
<Component SheetName="Sheet2"/>
<Component SheetName="Sheet3"/>
</Component>
</ResourcePool>
<ResourceLinkPool>
<GatheringParamsLink rRef="Gather0l" Usage="Input"/>
<!—three ComponentLink explicitly reference individual parts -->
<ComponentLink rRef="Sheets0l" Usage="Input">
<Part SheetName="Sheetl"/>
</ComponentLink>
<ComponentLink rRef="Sheets0l" Usage="Input">
<Part SheetName="Sheet2"/>
</ComponentLink>
<ComponentLink rRef="Sheets0l" Usage="Input">
<Part SheetName="Sheet3"/>
</ComponentLink>
</ResourcelLinkPool>
</JDF>

Implicit reference of ordered partitioned resources:
<JDF ID="Link0037" Type="Gathering" Status="Waiting">
<ResourcePool>

Page 87

Page 88

<GatheringParams ID="Gather0l" Class="Parameter" Locked="false"
Status="Available"/>
<Component ID="Sheets0l" Class="Quantity" Status="Available"
PartIDKeys="SheetName" ComponentType="Sheet" DescriptiveName="printed insert
sheets">
<Component SheetName="Sheetl"/>
<Component SheetName="Sheet2"/>
<Component SheetName="Sheet3"/>
</Component>
</ResourcePool>
<ResourcelLinkPool>
<GatheringParamsLink rRef="Gather0l" Usage="Input"/>
<!—the ComponentLink implicitly references all three parts -->
<ComponentLink rRef="Sheets0l" Usage="Input"/>
</ResourcelLinkPool>
</JDF>

3.9.4 Splitting and Combining Resources

Depending on the circumstances, it may be appropriate either to split a resource into multiple new nodes or to specify
multiple locations or parts for an individual resource. There are four possible methods for splitting and combining
resources, each of which is illustrated in Figure 3.8, below. Both Case A and Case B in Figure 3.8 represent workflows
that use the Amount attribute of their resource links to share resources. This method is practical when one controller
controls all aspects of resource consumption or production. In Case A, the resource amount is split between subsequent
processes. In Case B, individual processes produce amounts that are then combined into a unified resource that is, in
turn, used by a single process. In both cases, a single, shared resource is employed. To enable independent parallel
processing by multiple controllers, however, independent resources are required. To create independent resources from
one resource, the Split process is used, as shown in Case C (for further details, see Section 6.2.10 Split). This process
allows multiple processes to be spawned off, after which multiple processes can consume the same resource in parallel
and may therefore run in parallel. Case D demonstrates the reverse situation, which occurs if resources have been
produced by multiple processes and are then consumed, as a unified entity, by a single subsequent process. To
accomplish this, the Combine process combines multiple resources to create the single resource.

Page 88

Page 89

A: brief workflow for splitting by a shared input resource

Amount 1 ———— Node 1
Node A Amount 1+2+3 Amount 2————— | Node 2

B: brief workflow for combining by a shared output resource
F Amount 1
Amount 3

C: exact workflow for splitting

Split-Node

D: exact workflow for combining

Figure 3.8 Splitting and combining physical resources

3.10 AuditPool

Audit elements contain the post-facto recorded results of a process such
as the execution of a JDF node or modification of the JDF itself. Audit
elements become static after a process has been finished. They cannot
ever be modified after the process has been aborted or completed.
Therefore, if Audit elements link to resources, those resources should be
locked in order to inhibit accidental modification of audited information,
which is why JDF includes a locking mechanism for resources. The ID
of all resources that are referenced by Audit elements must be included
in the rRefs attribute of the AuditPool in order to enable spawning and
merging. Audit elements record any event related to the following
situations:

Audit Pools

Audit information is the Job’s
history and can support your daily,
quality control and troubleshooting
management reporting needs.

1. The creation of a JDF node by a Created element.
2. Spawning and merging, including resource copying by spawned and merged elements.

3. Errors such as unnecessary ResourcelLink elements, wrongly linked resources, missing resources, or missing
links, which may be detected by agents during a test run or by a Notification element.

Page 89

Page 90

4. Actual data about the production and resource consumption by a ResourceAudit element.

5. Any process phase times. Examples include setting up a device, maintenance, and washing, as well as down-
times as a result of failure, breaks, or pauses. Changes of implementation resource usage, such as a change of
operators by a PhaseTime element, would also constitute an example of a phase time.

6. Actual process scheduling data. For example, the process start and end times, as well as the final process
state, as determined by a ProcessRun element.

7. Any modification of a JDF node not covered by the preceding items, as recorded by a Modified or Deleted
element.

Audit information may be used by MIS for operations such as evaluation or invoicing. Figure 3.9 depicts the
structure of the AuditPool and Audit element types derived from the abstract audit type.

Page 90

Y e e e U e et |
AuditPool? |—— Audit* |
. rRefs? Auther?
SpawnID?
TimeStamp
Created* \ Spawned *
. ref . Independent?
* jRef
f : - . jRefDestination?
MOd_IﬁEd = NewSpawnlD
& jRef . rRefsROCopied?
o rRefsRWCopied?
* Status?
! URL?
Merged*
. Independent?
. jRef
L jRefSource?
* MergelD
o rRefsOverwritten?
o URL?
Notification™
* Class
. Type?
~
PhaseTime*
= End
* Start
. Status
! StatusDetails?
r ™\
ResourceAudit*
* ContentsModified?
L Reason?
ProcessRun®
L Duration?
* End
o EndStatus
. Start
Attributes:
ref = reference via ID to a resource or a JOF-node
iRef = reference via ID to a JOF-node

Class

Page 91

—(Device*

—Employee*

)

(ModulPhase*

L DevicelD?

L DeviceStatus
. End

= Modul Index

* ModulType

L Start

.

StatusDetails?

1—| Employee*® |

= Event | Information | Warning | Error | Fatal

Figure 3.9 Structure of Audit element types derived from the abstract Audit type

Audit entries are ordered chronologically, with the last entry in the AuditPool representing the newest. A
ProcessRun element containing the scheduling data finalizes each process run. All subsequent entries belong to
the next run. The following table defines the contents of the AuditPool element.

Page 91

Page 92

Table 3-29 Contents of the AuditPool element

Name Data Type Description
rRefs ? | IDREFS List of all resources that are referenced from within the AuditPool. Needed for Spawning.

Audit * | element Chronologically ordered list of Audit elements. The Audit elements are abstract and serve
as placeholders for any audit. Audit elements are described in the sections that follow.

3.10.1 Audit Elements

All Audit elements inherit the content from the abstract Audit data type, described in the following table.
Table 3-30 Contents of the abstract Audit type

Name Data Type H Description

AgentName ? String The name of the agent application that added the audit element to the audit
pool (and was responsible for the creation or modification). Both the
company name and the product name can appear, and should be consistent
between versions of the application.

AgentVersion ? String The version of the agent application that added the audit element to the
audit pool (and was responsible for the creation or modification). The
format of the version string can vary from one application to another, but
should be consistent for an individual application.

Author ? string Text that identifies the person who made the entry.

SpawnID ? | NMTOKEN | Text that identifies the spawned processing step when the entry was generated. This is

a copy of the SpawnlD attribute of the root JDF node of the process that generates the
Audit at the time the Audit is generated.

TimeStamp | dateTime In case of the audits Created, Modified, Spawned, Merged, and Notification, this
attribute records the date and time when the related event occurred.

In case of the audits PhaseTime, ProcessRun, and ResourceAudit, the attribute
describes the time when the entry was appended to the audit pool.

Listed in the following sections are the elements derived from the abstract Audit type. Following the description of
each element is a table outlining the attributes associated with that element.

3.10.1.1 ProcessRun

This element serves two related functions. Its first is to summarize one complete execution run of a node. It
contains attributes that record the date and time of the start, the end time, the final process state when the run is
finished, and, optionally, the process duration of the process run. These attributes are described in Table 3-31.

Table 3-31 Contents of the ProcessRun element

Name Data Type Description

Duration ? duration Time span of the effective process runtime without intentional or unintentional breaks.
That time span is the sum of all process phases when the Status is InProgress, Setup
or Cleanup.

End dateTime Date and time at which the process ends.

EndStatus | enumeration | The Status of the process at the end of the run. For a description of process states, see
Table 3-3 Contents of a JDF node.

Possible values are:
Aborted

Page 92

Name

Data Type

Page 93

Description
Completed
FailedTestRun
Ready

Stopped — The execution of the node is stopped and may commence at a later time,
e.g., on another device.

Start

dateTime

Date and time at which the process starts.

Part *

F

element

Describes which parts of a process this ProcessRun belongs to. If Part is not
specified for a ProcessRun, it refers to all parts. For example, imagine a print job
that should produce three different sheets. All sheets are described by one partitioned
resource. The Part elements define, unambiguously, the processing of the sheet to
which the ProcessRun refers.

The second function of a ProcessRun element is to delimit a group of audits for each individual process run.
Every group of audits terminates with a ProcessRun element, which contains the information described above. Ifa
process must be repeated (as a result of a late change in the order, for example), all audits belonging to the new run
will be appended after the last ProcessRun element that terminates the audits of the previous run. The number of
ProcessRun elements is, therefore, always equivalent to the number of process runs.

If a node describes partitioned resources, one ProcessRun may be specified for each individual part.
3.10.1.2 Notification

This element contains information about individual events that occurred during processing. For a detailed
discussion of event properties, see Section 4.6 Error Handling.

Name
Class

Table 3-32 Contents of the Notification element

Data Type Description

enumeration | Class of the notification. Possible values, in order of severity from lowest to

highest, are:

Event — Indicates that a pure event due to any activity has occurred, for example,
machine events, operator activities, etc. This class is used for the transfer of
conventional event messages. In case of Class = Event, further event
information should be provided by the Type attribute and NotificationDetails
element.

Information — Any information about a process which cannot be expressed by
the other classes. No user interaction is required.

Warning — Indicates that a minor error has occurred and an automatic fix was
applied. Execution continues.

Error —Indicates that an error has occurred that requires user interaction.
Execution cannot continue.

Fatal — Indicates that a fatal error led to abortion of the process.

Type ?

NMTOKEN | Identifies the type of notification. Also defines the name of the abstract

NotificationDetails element.” A list of predefined Notification types is
compiled in Appendix J NotificationDetails.

Comment *

telem

The Notification element may contain Comment elements with a verbose,
human-readable description of the event. If the value of the Class attribute is
one of Information, Warning, Error, or Fatal, it should provide at least one
Comment element. In case of Class = Event, Comment elements are optional.

CostCenter ?

element

The cost center to which this event should be charged.

Employee *

refelement The Employee(s) associated with this event.

? Type allows parsers that do not have access to the schema to find the instance of NotificationDetails.

Page 93

Page 94

Name Data Type Description
Notification- element Abstract element which is a placeholder for additional structured information. It
Details ? provides additional information beyond the Class and Type attribute and

beyond the Comment element. For a list of supported NotificationDetails
elements, see Appendix J NotificationDetails.

Part * element Describes which parts of a process this Notification belongs to. If Part is not
- specified for a Notification, it refers to all parts. For example, imagine a print

job that should produce three different sheets. All sheets are described by one
partitioned resource. The Part elements define, unambiguously, the sheet to
which the audit refers.

Table 3-33 Redundant table removed
Name Data Type Description

3.10.1.2.1 NotificationDetails
The abstract NotificationDetails element is a placeholder only with no additional attributes. For a list of supported
NotificationDetails elements, see Appendix J NotificationDetails.

3.10.1.3 PhaseTime

This element contains audit information about the start and end times of any process states and substates, denoted as
phases. Phases may reflect any arbitrary subdivisions of a process, such as maintenance, washing, plate changing,
failures, and breaks.

PhaseTime elements may also be used to log the actual time spans when implementation resources are used by
a process. For example, the temporary necessity of a fork lift can be logged if a PhaseTime element is added that
contains a link to the fork lift device resource and specifies the actual start and end time of the usage of that fork lift.

The times specified in the PhaseTime elements should not overlap with each other and should cover the
complete time range defined in the ProcessRun element that identifies the end of the run.

Table 3-34 Contents of the PhaseTime element

Description
CostType ? enumeration | Whether or not this PhaseTime is chargeable to the customer or not. One of:

Chargeable
Nonchargeable
If not specified, the cost type is unknown.[RP150]

Duration ? duration Duration of the phase. If not specified the value of End-Start is implied.
End dateTime Date and time of the end of the phase.
Start dateTime Date and time of the beginning of the phase.

Status enumeration | Status of the phase. Possible values of JDF node states are:
TestRunlnProgress

Setup

InProgress

Cleanup

Spawned

Stopped

The states listed above are a subset of the possible states of a JDF node. For all
possible states of a JDF node see Table 3-3. The remaining set of states, i.e. the
end states — Ready, FailedTestRun, Aborted and Completed—must be logged by
the ProcessRun audit element that terminates the list of audits for one process
run.

Page 94

Page 95

Description

StatusDetails ? | string Description of the status phase that provides details beyond the enumerative
values given by the Status attribute. For a list of supported values, see
Appendix G.

WorkType ? enumeration | Definition of the work type for this PhaseTime, i.e. whether or not this

PhaseTime relates to originally planned work, an alteration or rework. One of
Original: Standard work that was originally planned for the job

Alteration: Work done to accommodate change made to the job at the request of
the customer

Rework: Work done due to unforeseen problem with original work (bad plate,
resource damaged, etc.)

If not specified, the work type is undefined.

WorkTypeDetails | string Definition of the details of the work type for this PhaseTime, i.e. why the work
? was done.

For WorkType="Alteration”, values may include
CustomerRequest: The customer requested change(s) requiring the work.

InternalChange: Change was made for production efficiency or other internal
reason.

For WorkType="Rework”, values may include

ResourceDamaged: A resource needs to be created again to account for a
damaged resource (damaged plate, etc.)

EquipmentMalfunction: Equipment used to produce the resource malfunctioned,
resource must be created again.

UserError: Incorrect operation of equipment or incorrect creation of resource
requires creating the resource again.

If not specified, the work type details are unknown.[RP151]

Device * refelement Links to Device resources that are working during this phase.

Employee * refelement Links to Employee resources that are working during this phase.
ModulePhase * | element Additional phase information of individual device modules, such as print units.
Part * element Describes which parts of a job is currently being logged. If Part is not specified

for a node that modifies partitioned resources, PhaseTime refers to all parts.
For example, imagine a print job that should produce 3 different sheets. All
sheets are described by one partitioned resource. In order to separate the
different print phases for each sheet, the Part elements define, unambiguously,
the sheet to which the audit refers.

ResourceLink * | element These resource links specify the actual consumption/usage or production of

_ resources during this production phase.

It is possible to monitor the states of individual modules of a complex device, such as a printer with multiple print
units, by defining ModulePhase eclements. One PhaseTime element may contain multiple ModulePhase
elements and can, therefore, record the status of multiple units in a device. In contrast to PhaseTime audit
elements ModulePhase elements are allowed to overlap in time with one another. ModulePhase elements are
defined in the following table.

Table 3-35 Contents of the ModulePhase element

Name Data Type Description
DevicelD string Name of the device. This must be the DevicelD attribute of one of the Device
elements specified in the PhaseTime audit.

Page 95

Name
DeviceStatus

Data Type
enumeration

Page 96

Description
Status of the device module. Possible values are:

Unknown — The module status is unknown.

Idle — The module is not used, for example, a color print module that is inactive
during a black-and-white print.

Down — The module cannot be used. It may be broken, switched off etc.
Setup — The module is currently being set up.

Running — The module is currently executing.

Cleanup — The module is currently being cleaned.

Stopped — The module has been stopped, but running may be resumed later. This
status may indicate any kind of break, including a pause, maintenance, or a
breakdown, as long as running can be easy resumed.

These states are analog to the device states of Table 5-46.

Duration ?

| duration

Duration of the ModulePhase. If not specified the value of End-Start is implied.

End

dateTime

Date and time of the end of the module phase.

Modulelndex

F

IntegerRange
List

0-based indices of the module or modules. The list is based on all modules of the
Device.If multiple module types are available on one device, each must be unique
in the scope of the device.

ModuleType

NMTOKEN

Module description. The allowed values depend on the type of device that is
described. The predefined values are listed in Appendix A.

Start

dateTime

Date and time of the beginning of the module phase.

StatusDetails ?

string

Description of the module status phase that provides details beyond the
enumerative values given by the DeviceStatus attribute. For a list of supported
values, see Appendix G.

Employee *

refelement

Links to Employee resources that are working during this module phase on this
module (the module is specified by the attributes Modulelndex and
ModuleType).

3.10.1.4 ResourceAudit
The ResourceAudit element describes the usage of resources during execution of a node or the modification of the
intended usage of a resource, in other words the modification of a resource link. It logs consumption and production
amounts of any quantifiable resources, accumulated over one process run or one part of a process run. It contains one
or two abstract ResourceLink elements. The first is required and specifies the actual consumption/usage or production
of the resource. The second ResourceLink is optional and used to store information about the original resource link,

which also refers to the original resource.

If the original resource does not need to be saved, a boolean

ContentsModified attribute in the ResourceAudit should be used to indicate that a change has been made.

Table 3-36 Contents of the ResourceAudit element

Name Data Type Description

ContentsModified ? | boolean Specifies that a modification has occurred but that the original resource has been
deleted.

Reason ? enumeration | Reason for the modification. One of:

_ PlanChange — The resource was modified due to a change of plan before actual
processing.
ProcessResult — The default.

ResourceLink element The first resource link specifies the actual consumption/usage or production of a
resource.

ResourcelLink ? element The second optional resource link logs the modification of a resource link and the
modification of the resource it refers to. It holds the planned resource link which

Page 96

Page 97

Data Type Description
also refers to the planned resource. The planned and actual resource may be the
same.

For details on ResourceLink elements and ResourceLink subclasses, see Section 3.8 Resource Links. The
partitioning of resources using Part elements is defined in Section 3.9.2 Description of Partitionable Resources.

3.10.1.4.1 Logging Machine Data by Using the ResourceAudit

If a resource is modified during processing, any nodes that also reference the resource may also be affected. The
following logging procedure is recommended in order to track the resource modification and to insure consistency
of the job:

1. Create a copy of the original resource with a new ID.
2. Modify the original resource to reflect the changes.

3. Insert a ResourceAudit element that references the modified original resource with the first
ResourcelLink and the copied resource with the second ResourceLink attribute.

The following example describes the logging of a modification of the media weight and amount. The JDF document
before modification requests 400 copies of 80 gram media:

<JDF .. >
<ResourceLinkPool>
<MediaLink rRef="RLink" Usage="Input" Amount="400"/>
</ResourcelLinkPool>
<ResourcePool>
<Media Weight="80" ID="RLink" Amount="400" (..)/>
<ResourcePool/>
</JDF>

The JDF after modification specifies that 421 copies of 90-gram media have been consumed:

<JDF .. >
<ResourceLinkPool>
<MediaLink rRef="RLink" Usage="Input" Amount="400"/>
<!—note that the Resourcelink has not changed -->
</ResourcelinkPool>
<ResourcePool>
<Media Weight="80" ID="RPrev" Amount="400" (..) /> <!—Copy of the original
resource-->
<Media Weight="90" ID="RLink" Amount="421" (..)/> <!-modified resource-->
<ResourcePool/>
<AuditPool>
<ResourceAudit (..)>
<MediaLink rRef="RLink" Usage="Input" Amount="421"/>
<MediaLink rRef="RPrev" Usage="Input" Amount="400"/>
</ResourceAudit>
</AuditPool>
</JDF>[RP152]

3.10.1.4.2 Logging Changes in Product Descriptions by Using the ResourceAudit

ResourceAudit elements may also be used to store the original intent resources of a product specification in a
change order or request for requote. The mechanism is the same as above. The following example shows the
structure of a Medialntent with Option partitions, where a late change of options from Optionl (80 gram paper) to
Option2 (90 gram paper) is requested.

<JDF .. >
<ResourceLinkPool>
<MedialIntentLink rRef="id" Usage="Input">
<Part Option="Option2”/>

</MedialntentLink>
</ResourcelLinkPool>
<ResourcePool>
<MedialIntent PartIDKeys="Option” (..)>
<!— the common MediaIntent resource details -->

Page 97

Page 98

<MediaIntent Option=”Optionl” (..)>
<Weight Preferred="80"/>
</MedialIntent>
<MediaIntent Option=”Option2” (..)>
<Weight Preferred="90"/>
</MedialIntent>
</Medialntent>
<ResourcePool/>
<AuditPool>
<ResourceAudit (..)>
<!— the actual MediaIntent resource link -->
<MediaIntentLink rRef="id" Usage="Input">
<Part Option="Option2”/>
</MedialntentLink>
<!— the original MedialIntent resource link -->
<MedialIntentLink rRef="id" Usage="Input"/>
<Part Option="Optionl”/>
</MedialIntentLink>
</ResourceAudit>
</AuditPool>
</JDF>

3.10.1.5 Created
This element allows the creation of a JDF node or resource to be logged. If the element refers to a JDF node, it can
be located in the AuditPool element of the node that has been created or in any ancestor node. If the element refers
to a resource it must be located in the node where the resource resides so that the spawning and merging mechanism
can work effectively.

Table 3-37 Contents of the Created element

Name Data Type ‘ Description

ref? IDREF Represents the ID of the created element. Defaults to the ID of the local JDF node.
TemplatelD ? string Defines the Template JDF that was used as the template to create the node.
TemplateVersio | string Defines the version of Template JDF that was used as the template to create the
n? node.

3.10.1.6 Deleted
This element allows any deletions of a JDF node or Resource to be logged. The Deleted element must reside in the
the same AuditPool as the corresponding Created element.

Table 3-38 Contents of the Deleted element

Name Data Type \ \Description

JRef ? string The ID of the modified node or resource. The Deleted audit resides in a parent JDF of the
deleted node or resource.
XPath ? | xpath Location of the deleted element relative to the parent JDF node of the Deleted audit element.

3.10.1.7 Modified

This element allows any modifications affecting a JDF node, such as changes made to the Nodelnfo element or
Customerinfo element, to be logged. Changes that can be logged by other audit element types, such as resource
changes, must not use this common log entry. The modification can be described textually by adding a generic
Comment element to the Modified element. The Modified element must reside in the the same AuditPool as the
corresponding Created element.

Table 3-39 Contents of the Modified element

Name Data Type | Description
jRef ? | IDREF The ID of the modified node. The modified element resides in the modified node. Defaults to
the ID of the local JDF node.

Page 98

Page 99

3.10.1.8 Spawned

This element allows a job that has been spawned to be logged in the AuditPool of the parent node of the spawned
job-part or in the AuditPool of the node that has been spawned in case of spawning of individual partitions. For
details about spawning and merging, see Section 4.4 Spawning and Merging.

Table 3-40 Contents of the Spawned element

Name Data Type Description

Independent ? boolean Declares that independent jobs that have previously been merged into a big job
are spawned.
If it is set to true, the attributes jRefDestination, rRefsROCopied and
rRefsRWCopied have no meaning and should be omitted.
Default = false

JRef IDREF ID of the JDF node that has been spawned.

JRefDestination ? NMTOKEN | ID of the JDF node to which the job has been spawned.’ This attribute must be
specified in the parent of the original node if independent jobs are spawned.

NewSpawnID NMTOKEN | Copy of the SpawnID of the newly spawned node. Note that a Spawned audit

_ may also contain a SpawnlD attribute, which is the SpawnID of the node that
this audit is being placed into prior to spawning.

rRefsROCopied ? | IDREFS List of IDs separated by whitespace. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These resources
should NOT be modified by the spawned job.

rRefsRWCopied ? | IDREFS List of IDs separated by white spaces. Identifies the resources copied to the
ResourcePool element of the spawned job during spawning. These resources
may be modified by the spawned job and must be copied back into their
original location by the merging agent.
Resource copying is required if resources are referenced simultaneously from
spawned nodes and from nodes in the original JDF document.

Status ? enumeration | Status of the spawned node at the time of spawning. Allowed values are

_ defined in Table 3-3 Contents of a JDF node, Status.

URL ? URL Locator that specifies the location where the spawned node was stored by the

_ spawning process.

Part * element Identifies the parts that were selected for spawning in case of parallel spawning
of partitionable resources (see Section 4.4.3).

3.10.1.9 Merged

This element logs a merging event of a spawned node. For more details, see Section 4.4 Spawning and Merging.

Name
Independent ?

Data Type
boolean

Table 3-41 Contents of the Merged element

' Description

Declares that independent jobs are merged into a big job for common
production.

If it is set to true, the attributes jRefSource and rRefsOverwritten have no
meaning and should be omitted.

Default = false

Ref

IDREF

ID of the JDF node that has been returned or merged.

JjRefSource ?

NMTOKEN

ID of the JDF root node of the big job from which the spawned structure has
been returned. *

* The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.
* The data type is NMTOKEN and not IDREF because the attribute refers to an external ID.

Page 99

Page 100

Name Data Type \ Description
MergelD NMTOKEN | Copy of the SpawnID of the merged node. Note that a Merged audit may
_ also contain a Spawnl/D attribute, which is the SpawnID of the node that this

audit is being placed into prior to merging.

rRefsOverwritten ? | IDREFS Identifies the copied resources that have been overwritten during merging.
Resources are usually overwritten during return if they have been copied
during spawning with read/write access.

URL ? URL Locator that specifies the location of the merged node prior to merging by the
_ merging process.
Part * element Specifies the selected parts of the resource that were merged in case of parallel

spawning and merging of partitionable resources (see Section 4.4.3).

3.11 JDF Extensibility

JDF is meant to be flexible and therefore useful to any vendor, as each vendor will have specific data to include in
the JDF files. JDF is able to provide this kind of versatility by using the XML namespaces. This chapter describes
how JDF uses the XML extension mechanisms.

3.11.1 Namespaces in XML

JDF Extensibility is implemented using XML Namespaces. The Namespaces in XML specification is found at
http://www.w3.org/TR/REC-xml-names/.

XML namespaces are defined by xmins attributes. A general example
is provided below. The example illustrates how private namespaces are Using
declared and used to extend an existing JDF resource by adding private 6"

attributes and a private element. Namespaces

In JDF
<JDF xmlns="http://www.CIP4.org/JDFSchema 1 1"

xmlns: foo="fooschema URI" .. > It is required to define the
default namespace in a JDF
document, even if no non-JDF
extensions are used. JDF may

<SomeJDFDefinedResource name="abc"
foo:specialname="cba">

<foo:PrivateStuff type=""/> be defined either_ in the defqult
namespace or in a qualified
</SomeJDFDefinedResource> namespace.
</JDF>

Namespaces are inserted in front of attribute and element names. The associated namespace of element names with
no prefix is the default namespace defined by the xmlns attribute. The associated namespace of attributes with no
prefix is that one of the element (see Appendix A.2 XML Namespace Partitions in the specification Namespaces in
XML). All namespaces prefixes must be declared using standard xmins:xxx attributes.

3.11.1.1 JDF Namespace

The official namespace URI for JDF Version 1.0 is: "http://www.CIP4.org/JDFSchema 1".

The official namespace URI for JDF Version 1.1 through 1.x [RP153]is: "http://www.CIP4.org/JDFSchema 1 1".
It is strongly recommended to use either the default namespace with no prefix or a prefix of “JDF” as the jdf
namespace prefix.

Page 100

Page 101

3.11.1.2 JDF Extension Namespace

CIP4 defines an extension namespace where new features that are anticipated to be included in a future version of
the specification are defined.

The official extension namespace URI for JDF Version 1.1 is: "http://www.CIP4.org/JDFSchema 1 1 X"

It is strongly recommended to use a prefix of “JDFX” as the jdf extension namespace prefix.

3.11.2 Extending Process Types

JDF defines a basic set of process types. Because JDF allows flexible encoding, however, this list, by definition,
will not be complete. Vendors that have specific processes that do not fit in the general JDF processes and that are
not combinations of individual JDF processes (see Section 3.2.3 Combined Process Nodes) can create JDF process
nodes of their own type. Then the content of the Type attribute may be specified with a prefix that identifies the
organization. The prefix and name must be separated by a single colon (“:”) as shown in the following example:

<JDF Type="myCompaniesNS:MyVeryImportantProcess" xmlns=
"http://www.CIP4.0org/JDFSchema 1 1" xmlns:myCompaniesNS="my companies namespace URI" ..
>

</JDF>

The use of namespace prefixes in the Type attribute is for extensions only. Standard JDF process types must be
specified without a prefix in the Type attribute or the Types attribute of a combined node.

If a process is simply an extension of an existing process, it is possible to describe the private data by extending the
existing resource types. This is described in greater detail in the sections below.

Extending the Nodelnfo and Customerinfo nodes is achieved in a manner analogous to the extension of
resources, which is described below. On the other hand, extending the direct contents of JDF nodes by adding new
elements or attributes is discouraged.

3.11.3 Extending Existing Resources

All resources defined by JDF may be extended by adding attributes and elements using one’s own namespace for
these resource extensions. This is useful when the predefined resource types need only a small amount of private

Extensibility Caution

JDF’s “Extensibility” simply means that you can add your own XML elements, attributes, and
enumerations to a JDF application. Although JDF is quite extensive, odds are you'll find that your
current databases and workflow systems use information elements that are unique to your client
market or company ... they may have even been defined by your internal MIS staff. CIP4
acknowledges that it can’t define everything, nor should it prevent innovation by codifying
everything in a static manner, and JDF’s extensibility provides both printers and technology
providers with the flexibility they need to make JDF a success.

However, if you or your technology vendors extend JDF, please do so with caution. JDF’s
success depends on the ability of MIS systems and JDF-enabled devices to write, read, parse,
and use JDF. Extensions are custom integration applications and great care needs to be made to
ensure that extensions made for one systems or device will not jam the JDF workflow or other JDF
enabled systems and devices. If they use extensions to JDF, your technology providers should be
able to provide you with a fully validated JDF schema and documentation that includes the use of
their extensions. Extensions that are not documented, or that may not be disclosed to third parties
for integration purposes, should be viewed skeptically.

data added, or if those resources are the only appropriate place to put the data. The namespace of the resource
extended must not be modified. However, the mechanism for creating new resources in a separate namespace is
provided in the next section.

Page 101

Page 102

This does not mean that duplicate functionality may be added into these resource types. You must make sure to
use the JDF-defined attributes and elements where possible and extend them with additional information that cannot
be described using JDF-defined constructs. For example, it is not allowed to extend the RIP resource that controls
the resolution with a foo:Resolution or foo:Res attribute that overrides the JDF defined resolution parameter (see
attribute Resolution of resource RenderingParams in Section 7.2.119).

3.11.4 Extending NMTOKEN Lists

Many resources contain attributes of type NMTOKEN and some of these have a set of predefined, suggested
enumerative values. These lists may be extended with private keywords. In order to identify private keywords, it is
strongly suggested to prefix these keywords with a namespace-like syntax, i.e., a namespace prefix separated by a
single colon (*:’). Implementations that find an unknown NMTOKEN prefixed by a namespace prefix may then
attempt to use the default value of that attribute. For instance, if a JDF instruction contains the following text:

<TrappingParams TrapEndStyle="HDM:FooBar” (..)/>

Based of the definition of TrappingParams, the best assumption is to use TrapEndStyle = “Miter” .
Example from TrappingParams

Name Data Type Description
TrapEndStyle ? | NMTOKEN | Instructs the trap engine how to form the end of a trap that touches another object.
Possible values include:

Miter

Overlap

Other values may be added later as a result of customer requests.
Default = Miter

3.11.5 Creating New Resources

There are certain process implementations that have functionality that cannot be specified by the predefined Resource
types. In these cases, it is necessary to create a new Resource-type element, which must be clearly specified using its
own namespace. These resource types may only be linked to custom type JDF process nodes.

3.11.6 Future JDF Extensions

In future versions, certain private extensions will become more widely used, even by different vendors. As private
extensions become more of a general rule, those extensions will be candidates for inclusion in the next version of the JDF
specification. At that time the specific extensions will have to be described and will be included into the JDF namespace.

3.11.7 Maintaining Extensions
Given the mix of vendors that will use

JDF, it is likely that there will be a /q ’ Submit Your Extensions to CIP4
number of private extensions.
Therefore, JDF controllers must be

prepared to receive JDF files that have | riting JDF extensions? CIP4 encourages you to become part
extensions. These controllers can and | of the standard and submit your private extensions for review
should ignore all extensions they don’t | and possible inclusion in future versions of the JDF standard.
understand, but under no circumstance | Not only may adoption of extensions into the JDF standard
are they allowed to remove these | help make it easier for customers to decide to buy your
extensions when making modifications | products, but CIP4 is also considering adopting a formal
to the JDF. If they d@ it will break the | review process for extensions with future editions of the JDF
extensibility mechanism. For example, | standard; by participating in JDF’s development now you could

imagine that JDF Agent A creates a JDF | save time and customer confusion in the future.
and inserts private information for

Page 102

Page 103

Process P. Furthermore, the information is only understood by agent A and the appropriate device D for executing
P. If the JDF needs to be processed first by another Agent/Device C, and that process removes all private data for P,
Process P will not be able to produce the correct results on device D that were specified by Agent A.

3.11.8 Processing Unknown Extensions

If a node is processed by a controller or device and it encounters an unknown extension in one of its input resources,
the expected behavior depends on the current value of SettingsPolicy.

If SettingsPolicy =”BestEffort”, a Notification audit element with Class = warning should be logged.

If SettingsPolicy =”MustHonor” the process must not continue and a Notification audit element with Class =
error should be logged.

If SettingsPolicy ="Operatorintervention” the process must stop and wait for an operator intervention and a
Notification audit element with Class = warning should be logged.

3.11.9 Derivation of Types in XMLSchema

The XML Schema definition http://www.w3.org/TR/xmlschema-1/ describes a mechanism to create new types by
derivation from old types. This is an alternative to extend or create new elements and is described in Section 4 of
http://www.w3.org/TR/xmlschema-0/. This mechanism is not allowed to be applied to any elements defined by JDF
because such new element types can only be understood by agents/devices that know the extension. The use of the
derivation mechanism is allowed only for private extensions but not required.

3.12 JDF Versioning

The JDF Specification is an evolving document that exists in multiple versions. Real workflows will be executed by
devices that individually support different versions of the specification. Complete JDF workflow descriptions may
therefore contain sub-jdf nodes that must be specified with different versions in one document.

3.12.1 JDF Version Requirements

The following list of requirements take the specific needs of a mixed version JDF workflow into account:

e JDF Documents with mixed versions must be supported.
o Environments with devices that support different JDF versions will exist.
o It is not feasible to enforce simultaneous software upgrades for devices from multiple vendors in

one production facility.

e MIS systems will NOT always support all versions of all devices that are described in the JDF.
o Customers may update a workflow system or device without updating the MIS system.

e Archived JDF documents must remain valid when a new version of the JDF specification and schema is

published.

3.12.2 JDF Version Definition

The Version of a JDF node is defined as the highest version of all attributes or elements and linked resources.

The version of a resource is defined as the highest version of all elements, attributes or resources that are linked via
refElements.

3.12.3 JDF Version Policies

The following proposal specifies the policies for evolving JDF 1.x versions. When JDF is stated in this context, JMF
is implied to be included analogously. It involves three areas: JDF Specification rules, JDF Schema definition rules
and JDF Application behavior. The policies are in place beginning with the transition from JDF 1.1 to JDF 1.2. JDF
1.0 is not included in this versioning discussion.

Page 103

Page 104

3.12.3.1 JDF Specification Version Policies
The following list defines the policies that will be followed when extending the JDF specification.

e Changes to the JDF specification must be backwards compatible.
o Extension elements or attributes must not be required.
= New attributes in existing elements must be optional.
= New elements in existing elements must be optional.
= New elements may contain required elements or attributes.
o Elements and attributes must not be removed.
= Deprecated elements or attributes are still valid in all versions of JDF 1.x
o Data type changes must be extensions of existing data types. In other words the datatype of an
extended attribute must be a complete superset of the existing datatype. For instance, only the
extensions defined by the arrow directions are valid.
= enumeration > NMTOKEN
= NMTOKEN - string
= integer = IntegerList
= integer = double
e The JDF/@Version attribute is required in the root of JDF instance documents.
e The semantics of attributes and elements will not be altered.
o No new attributes or elements will be introduced that conditionally modify the semantics of
existing attributes and elements.
o Semantics will only be altered when the previous definition is clearly wrong and the result is
unpredictable with the previous definition. (bug fixes in the specification). These changes will be
clearly marked in the specification.

3.12.3.2 JDF Schema Version Policies
The following list defines the policies that will be followed when generating new schemas for new versions of the
JDF specification.
e Changes to the JDF schema must be backwards compatible.
o JDF 1.x documents must validate against JDF 1.(x+n) schemas.
e Only one JDF schema namespace will be defined for all versions of JDF 1.x.
o The namespace is http://www.CIP4.0rg/JDFSchema 1 1.
e The xs:version attribute will be defined in the schema.
o Applications that read a schema may verify that they are compatible with the version of the
schema.
o Applications may choose a schema based on the schema’s version tag.
= the schema version selection can be based on a best match to both application and JDF
ticket or even JDF node.
e The JDF/(@Version attribute is defined as an enumeration that contains all valid versions for the schema,
e.g. 1.1 and 1.2 for the JDF 1.2 version of the schema.
o This allow schema validators to detect incompatible versions when parsing a local legacy schema.
e The version annotations in the schema will be maintained wherever possible.
e Explicit copies of published legacy schema versions will be available on the CIP4 website.

3.12.3.3 JDF Application Version Policies
This section specifies the policies that implementations should follow in order to support multiple versions of JDF.
The policies are specified for Agents and Controllers/Devices separately.

3.12.3.3.1 JDF Agent Version Policies
JDF agents must ensure that the JDF that they generate is consistently versioned.
e An agent must update the JDF/@Version attribute when inserting new attributes or elements.
o Ifan Agent is not aware of versions, it must assume that anything that it writes belongs to the
Agent’s maximum version. In this case, the Version of any node that is affected is the maximum
of its prior version or the Agent’s version.
e An agent must honor the JDF/@MaxVersion attribute.

Page 104

Page 105

o An Agent must not add attributes, elements or attribute values that were introduced in a version
that is higher than JDF/@MaxVersion.
e An Agent should insert the lowest possible JDF/@Version attribute that is applicable to the nodes version
as described in ##ref 3.12.2.
e The IDF/@Version of a spawned JDF node is identical to the JDF/@Version of that node in a complete
JDF.

3.12.3.3.2 JDF Device/Controller Version Policies
A JDF Device/Controller, i.e. any implementation that reads JDF should be backwards compatible:
e Implementations are strongly encouraged to handle deprecated elements and attributes gracefully.
o MustHonor / BestEffort is applied to previous versions of the JDF.

JDF Devices/Controllers, i.e. any implementation that reads JDF should attempt to be forwards compatible.
e Schema validation errors that find an unknown attribute, element or attribute value in a JDF with a version
that is higher than the schema should not lead to an abort.
e An Agent that reads a JDF with a version that is higher than the version that it was developed for should
attempt to execute the JDF if SettingsPolicy=BestEffort.
e An Agent that reads a JDF with a version that is higher than the version that it was developed for must not
execute the JDF if SettingsPolicy=MustHonor.
e Implementations are strongly encouraged to handle non-fatal version validation errors gracefully.
o Unknown attributes/elements in the JDF namespace should be treated analog to foreign
namespace attributes/elements when handling nodes that are not executed by the Controller.
o Unknown versions of the JDF namespace should be treated analog to foreign namespace elements
when handling nodes that are not executed by the Controller.[RP154]

Page 105

Page 106

Chapter 4 Life Cycle of JDF

Introduction

This chapter describes the life cycle of a JDF job, from creation through modification to processing. Information is
provided about the spawning of individual aspects of jobs and in what way they are reincorporated into the job once the
process is completed. Ancillary aspects of the life cycle, such as test running and error handling, are also discussed.

4.1 Creation and Modification

The life cycle of a JDF job will likely follow one of two scenarios. In the first scenario, a job is created all at once,
by a single agent, and then is consumed by a set of devices. More often, however, a job is created by one agent and
is then transformed, or modified, over time by a series of other agents. This process may require specification of
product intent, which is defined in Section 4.1.1, below.

Jobs can be modified in a variety of ways. In essence, any job is modified as it is executed, since information
about the execution is logged. The most common instance of modification of a JDF job, however, occurs during
processing, when more detailed information is learned or understood and then added along the way. This
information may be added because an agent knows more about the processing needed to achieve some result
specified in a JDF node than the original, creating agent knew. For example, one agent may create a product node
that specifies the product intent of a series of pages. This product node may include information about the number
of pages and the paper properties. Another node may then be inserted that includes a resource describing how the
pages should be Ripped. Later, another agent may provide more detail about the RIPpi[RP155]ng process by
appending optional information to the RIP parameter resource.

Regardless of where in the life cycle they are written, nodes and their required resources must be valid and
include all required information in order to have a Status of Ready (in case of nodes) or Available (in case of
resources). This restriction allows for the definition of incomplete output resources. For example, a URL resource
without a file name may be completed by a process. On the other hand, it is impossible to define a valid and
executable node with insufficient input parameters.

Once all of the inputs and parameters for the process requested by a node are completely specified, a controller
can route the JDF job containing this node to a device that can execute the process. When the process is completed,
the agent/controller in charge of the device will modify the node to record the results of the process.

4.1.1 Product Intent Constructs

JDF jobs, in essence, are requests made by customers for the | o>
production of quantities of some product or products. In —

other words, a job begins with a particular goal in mind. In
“Product Intent” is another way of saying “Job

Product Intent

JDF, product goals are often specified by using a construct
known as product intent, represented by intent resources. In

contrast to process resources that define precise values,
intent resources allow ranges or sets of preferred values to
be specified. Resources of this kind include
Foldingintent, Colorintent, Medialntent, and
ShapeCuttingintent, all of which are described in
Chapter 7 Resources.

The product intent of a job is like a plan of action. The
plan may be extremely vague, detailing only the general
goal, or it may be very specific, stipulating the specific
requirements inherent in meeting that goal. Product intent

may be defined for an end product about which little is known or about which the processing details for the job are entirely
unknown. Product intent constructs also allow agents to describe jobs that comprise multiple product components, and that

may share some parts.

Specifications.” Rather than describing how a
job will be made, “Product Intent” describes
what a job (or some aspect of a job) will look
like when it is completed. “Product Intents” may
initiate with the customer and in rather vague
terms and they may be later flushed out or
completed by a printer's customer service
representative, estimating department or
production planners.

Page 106

Page 107

Product intent is defined by the initiating agent of a job. It is not required, however. Many JDF jobs are written
with full knowledge of the necessary processes, and are therefore comprised entirely of the various kinds of process
nodes described in Sections 3.2.1, 3.2.2, and 3.2.3. Any job that specifies product intent, however, must include
nodes whose Type = Product. This representation is described in the following section.

4.1.1.1 Representation of Product Intent

The product description of a job is a hierarchy of Product nodes, and the bottom-most level of the product hierarchy
represents portions of the product that are each homogeneous in terms of their materials and formats. All nodes
below these Product nodes begin specifying the processes required to produce the products.

Product nodes are required to contain only one thing, and that is a resource that represents the physical result
specified by the node. This resource is generally a Component. In addition, somewhere in the hierarchy of
product nodes, it is a good idea to include an intent resource to describe the characteristics of the intended product.
Although these are the only resources that should occur, product nodes can contain multiple resources. For
example, some ResourceTypes, such as Medialntent and Layoutintent, are defined to provide more general
mechanisms to specify product intent.

In some cases, more than one high level product node will use the output of a product node. These high level
nodes represent the combination of homogeneous product parts. In this case, the Amount attribute of the
ResourceLinks that connect the nodes will identify how the lower level product is shared.

4.1.1.2 Representation of Product Binding

Some product intent nodes, such as Bindinglntent, define how to combine multiple products. To accomplish this,
the respective Component resources must be labeled according to their usage. For example, the Cover and Insert
attributes use the ProcessUsage attribute of the respective resource links. For more information about product
intent, see Section 3.2.1 Product Intent Nodes.

4.1.2 Defining Business Objects Using Intent Resources

Business objects like requests for quote, quote, invoice, etc. need to reference processes at a level that is well represented
by product intent nodes. It is assumed that business object
metadata such as financial information, business document _

type, customer information, etc. is defined by an XML ‘ PrintTalk Implementation
envelope that contains JDF as a job description. If this is

not the case, the business related metadata may be placed
into the BusinessInfo element of the Nodelnfo element of A PrintTalk implementation guide can be found at

the root JDF and the customer related data may be placed | http://www.printtalk.org/implementation.html
into the Customerinfo element of the root JDF.

This section sketches the usage of JDF in an eCommerce environment using the business object model that was
defined by the PrintTalk www.PrintTalk.org consortium.

The following table describes the individual business objects and their relationships. Object Type defines the name
of the XML element that defines the metadata. All object types are inherited from the abstract PrintTalk Request
element. References defines the business objects that are responded to when generating the business object and
buyer-provider arrow defines the direction of the transaction.

Table 4-1. Business Objects as defined by PrintTalk

Object Type Description References Direction
Request for Quote Initiated by a buyer to a print supplier. It may None, Quote, Confirmation | B—P
(RFQ) instigate a new product process or it may supersede

an existing RFQ. The Change Order and Request
for Requote variations are included within Request
for Quote.

Quote Normally sent in response to a RFQ. The Requote | RFQ, PO, Confirmation B<P
and Change Order Quote variations are included

within Quote. A Quote may supersede an existing
Quote before the Print Buyer has answered with a

Page 107

Page 108

Direction

Object Type

Description
RFQ or an Order.

References

Purchase Order

Typically sent as a response to a quote, but may be
the initial document in a well defined buyer / print
supplier relationship or when ordering finished
goods items. The Change Order variation is
included within Purchase Order. An order may
supersede an existing Order prior to the Print
Provider having confirmed it.

None, Quote, Confirmation

B—P

Order Confirmation

Sent by the print supplier to the buyer
acknowledging receipt of the purchase order. It
may contain information about expected due dates
and final pricing that were undetermined at the time
of the quote.

PO

B<P

Cancellation

Cancels a complete job. If only parts of a job
should be cancelled, one must send a new RFQ,
Quote, or PO. In case of canceling parts of a
confirmed order the Change Order variations of
these Business Objects must be sent.

RFQ, Quote, PO,
Confirmation

B~P

Refusal

Used to explicitly decline a Business Object sent by
the counter party. Alternatively, the non-accepted
Business Object expires.

RFQ, Quote, PO

B<P

Order Status Request

Generated anytime one party requests status from
another party.

Confirmation

B~P

Order Status
Response

An Order Status Response can be sent as a response
to an Order Status Request or it can be sent
automatically.

Confirmation, Order Status
Request

B~P

Proof Approval
Request

Provides a transport for proofing from supplier to
buyer. This may contain MIME data or a URL
where the proof is located.

Confirmation

B<P

Proof Approval
Response

Contains buyer’s approval or denial of a proof.

Proof Approval Request

B—P

Invoice

Typically sent once the job is shipped, but can also
be sent several times, when certain milestones
during production are reached. May include
additional charges or discounts.

Confirmation, Cancellation

In the following figure the workflow of these business objects is partly illustrated in a simplified manner. See the
PrintTalk specification at www.printtalk.org for a complete picture.

Superceding
RFQ

Change Order
RFQ
Change Order
Quote

Superceding Superceding
Quote PO

Request for

Requote
Requote

Page 108

Change

PO

Page 109

Figure 4.1 Simplified PrintTalk workflow (negotiation phase)

The node that defines an RFQ must contain one or more Deliverylntent resources that define the amounts and
methods of delivery. The Usage of the ResourceLinks is Input, its Type is “Product’ and the Business object is
an RFQ.

The examples quoted in this section use an object model as defined by PrintTalk with the business objects
defined in BusinessInfo. This does not preclude the use of other eCommerce systems. The following examples show
equivalent PrintTalk and pure JDF document text. The highlights show the respective position of an RFQ.

PrintTalk example
<PrintTalk>
<Header>
Standard CXML header
</Header>
<Request>
<RFQ AgentID="Lara" RequestDate="2002-04-05T1700-0800"” Expires="2002-04-15T1700-0800"
Estimate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ ID">
<JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<NodeInfo LastEnd="2000-12-24T06:02:42+01:00"/>
(...)
</JDF>
</RFQ>
</Request>
</PrintTalk>

Equivalent pure JDF Example
<JDF ID="ScreenTest" Type="Product" JobID="ScreenJob" Status="Waiting" Version="1.1"
xmlns="http://www.CIP4.0org/JDFSchema 1 1">
<NodeInfo LastEnd="2000-12-24T06:02:42+01:00">
<BusinessInfo>
<RFQ AgentID="Lara" RequestDate=”2002-04-05T1700-0800"” Expires="2002-04-15T1700-0800"
Estimate="false" AgentDisplayName="Lara Garcia-Daniels" Currency="EUR" BusinessID="RFQ ID"/>
</BusinessInfo>
</NodeInfo>

(...)
</JDF>

4.1.3 Specification of Delivery of End Products

A job may define one or more products and specify a set of deliveries of end products. To accomplish this, a node of
Type = Product is created to define each delivery mode to be made. A delivery contains a set of drops, which in turn
contain a set of drop items. Each drop has a common delivery address and each package contains the amount of an
individual Component or ComponentRef that is to be delivered to this address. Quote generation as defined in the
previous chapter includes the specification of delivery addresses. For more information, see section 6.2.4 Delivery.

4.1.4 Specification of Process Specifics for Product Intent Nodes

Product intent nodes are designed to represent a customer’s view of the product. In some instances, a knowledgeable
customer may want to specify production details that are only available in JDF process resources for a given
product. Examples include scanning or screening parameters. This customer will still have no knowledge or control
of the process workflow.

Individual JDF nodes can be inserted into a product intent node. These nodes will contain the requested process
resource definitions as input resource links. The Status attribute of these resources should be “Incomplete”. No
output resources should be defined. In other words the actual specification of the process workflow should be left
undefined. The application that sets up the actual workflow can then use these resource templates as a starting point
for defining the process. It is recommended to specify a ProcessGroup node that does not define the process
granularity. For details see ##ref 3.2.2.1. [RP156]The following example shows how an ellipse spot function is
requested within a simple product description. The JDF node in yellow highlight defines the screening parameters of
the product.

<?xml version="1.0' encoding="utf-8' 7>

Page 109

Page 110

<JDF ID="HDM20001106181236" Type="Product" JobID="HDM20001106181236"
Status="Waiting" Version="1.0">
<ResourcePool>
<Component ID="Link0003" Class="Quantity" Amount="10000"
Status="Unavailable" DescriptiveName="complete 1l6-page Brochure"/>
<LayoutIntent ID="Link0004" Class="Intent" Status="Available">
<Dimensions Range="576 720~648 864" DataType="XYPairSpan"
Preferred="612 792"/>
<Pages DataType="IntegerSpan" Preferred="16"/>
</LayoutIntent>
<MediaIntent ID="Link0005" Class="Intent" Status="Available"
PartIDKeys="Option">
<FrontCoatings DataType="NameSpan" Preferred="None"/>
<MediaIntent Option="1">
<FrontCoatings DataType="NameSpan" Preferred="Glossy"/>
</Medialntent>
<BackCoatings DataType="NameSpan" Preferred="None"/>
</MediaIntent>
</ResourcePool>
<ResourceLinkPool>
<ComponentLink rRef="Link0003" Usage="Output"/>
<LayoutIntentLink rRef="Link0004" Usage="Input"/>
<MediaIntentLink rRef="Link0005" Usage="Input"/>
</ResourceLinkPool>
<AuditPool>
<Created Author="Rainer's JDFWriter 0.2000" TimeStamp="2003-11-
06T18:12:36+01:00"/>
</AuditPool>
<JDF ID="Link0006" Type=""ProcessGroup” Types='"Screening" Status="Waiting">
<ResourcePool>
<ScreeningParams ID="ScreenID" Class="Parameter" Status="Incomplete'">
<ScreenSelector SpotFunction="Ellipse" ScreeningFamily="My favorite
screen" />
</ScreeningParams>
</ResourcePool>
<ResourceLinkPool>
<ScreeningParamsLink rRef="ScreenID" Usage="Input"/>
</ResourcelinkPool>
</JDF>
</JDF>

4.2 Process Routing

A controller in a JDF workflow system has two tasks. The first is to determine which of the nodes in a JDF
document are executable, and the second is to route these nodes to a device that is capable of executing them. Both
of these procedures are explained in the sections that follow.

In a distributed environment with multiple controllers and devices, finding the right device or controller to
execute a specific node may be a non-trivial task. Systems with a centralized, smart master controller may want to
route jobs dynamically by sending them to the appropriate locations. Simple systems, on the other hand, may have a
static, well defined routing path. Such a system may, for example, pass the job from hot folder to hot folder. Both
of these extremes are valid examples of JDF systems that have no need for additional routing metadata.

In order to accommodate systems between these extremes, the Nodelnfo element of a node contains optional Route
and TargetRoute attributes that let an agent define a static process route on a node-by-node basis.
JMF/QueueSubmissionParams/@ReturnURL takes precedence over Nodelnfo/@ TargetRoute of the JDF that is
processed. [RP157]If no Route or TargetRoute attribute is specified and if a controller has multiple options where to
route a job, it is up to the implementation to decide which route to use.

Page 110

Page 111

The controller or device reading the JDF job is responsible for processing the nodes. A device examines the job
and attempts to execute those nodes that it knows how to execute, whereas a controller routes the job to the next

controller or device that has the appropriate capabilities.

4.2.1 Determining Executable Nodes
In order to determine which node should be executed, the controller/device uses the following procedures:

1. First, it searches the JDF
document for node types it can
execute by comparing the Type
attribute of the node to its own
capabilities, and by determining
the Activation of the nodes. It
should also verify that the
Status of the node is either
Waiting or Ready. Devices may
opt to limit the scope of the node
search. The limitations should be
specified in the device capability
description by appropriately
setting
DeviceCap:ExecutionPolicy.

2. The controller/device may then
determine whether no resources
have a Status of Incomplete or a
SpawnStatus of SpawnedRW.
It should also determine whether
all of the input resources of the
respective nodes have a Status
of Available and that all
processes that are attached
through pipes are ready to
execute. A controller may
optionally skip these checks and
expect the lower level controller
or device that it controls to
perform this step and return with
an error if it fails.

3. Finally, if scheduling
information is provided in the
Nodelnfo element, the specified
start and/or end time must be
taken into account by the
executing device. If no process
times are specified, it is up to the
device in charge of queue

handling to execute the process node.

Activalion =
TestRun or
TestRunAndGo

Activation

= Active
TestRunIn
Progress
Test Run
O/ Hold
Resume
QueueEntryStatus

= Running

Test Run
Failed

In
Progress

Stopped

Cleanup

End
States

Failed

TestRun Completed Aborted

The node will go through various stati during its life time as is described in the following diagram:

Page 111

Page 112

Figure 4.2 Life Cycle of a JDF node

4.2.2 Distributing Processing to Work Centers or Devices

JDF syntax supports two means of distributing processes to work centers or devices. Its first option is to use a
“smart” controller that has the ability to parse a JDF job and identify individual processes or process groups that
may be distributed to a particular work center or device. This smart controller may use spawning and merging
facilities to subdivide the job ticket and pass specific instructions to a work center or device.

The second option, which is applicable when the controller being used isn’t “smart,” is to employ a simple
controller implementation that routes the entire job to each workcenter or device, thus leaving it up to the recipient
to determine which processing it can accomplish. For this option to work, each JDF-capable device must be able to
identify process nodes it is capable of executing. Furthermore, each device must have sufficient JDF-handling
capabilities to identify processes that are ready to run.

4.2.3 Device / Controller Selection

The method used to determine which is the appropriate device or lower level controller to use to execute a given
node depends greatly on the implemented workflow being used. Although JDF provides a method for storing
routing information in the Route attribute of the Nodelnfo element of a node, it does not prescribe any specific
routing methods. However, some of the tools available to figure out alternative workflows are described below.

Knowledge of the capabilities of lower level controllers/devices either may be hard-wired into the system or
gained using the KnownJDFServices message. Since JDF does not yet provide mechanisms to determine whether
a given device is capable of processing a node without actually performing a test run, a controller must either have a
priori knowledge of the detailed capabilities of devices that it controls or it must perform a test run to determine
whether a device is capable of executing a node. Furthermore, in addition to the explicit routing information in the
Route attribute of the Nodelnfo element of a node, JDF may contain implicit routing information in the form of

Device implementation resources.

JMF defines the KnownControllers query to find controllers and the KnownDevices query to find devices that are
controlled by a controller. The information provided by these queries can be used by a controller to infer the appropriate
routing for a node. In a system that does not support messaging, this information must be provided outside of JDF.

4.3 Execution Model

JDF provides a range of options that help controllers tailor a processing system to the needs of the workflow and of the
job itself. The following sections explain the ways in which controllers execute processes using these various options.

The processing model of JDF is based on a producer/consumer model, which means that the sequencing of
events is controlled by the availability of input resources. As has been described, nodes act both as producers and
consumers of resources. When all necessary inputs are available in a given node, and not before, the process may
execute. The sequence of processing, therefore, is implied by the chain of resources in which the output resources
of one node become the input resources of a subsequent node.

JDF supports four kinds of process sequences: serial processing, overlapping processing, parallel processing,
and iterative processing. All four are described in the following sections.

4.3.1 Serial Processing

The simplest kind of process routing, known as serial processing, executes nodes sequentially and with no overlap.
In other words, no nodes are executed simultaneously. Once the process has acted upon the resource in some way,
the resource availability is described by the Status attribute of the resource, as described above. When the process
state is Ready or Waiting, the process can begin executing.

In a workflow using serial processing, the controller is responsible for comparing the actual amount available
with the specified amount in the corresponding PhysicalLink element to determine whether or not the input
resource can be considered available. If no amount is specified in the PhysicalLink, the process is assumed to
consume the entire resource.

Page 112

Page 113

P2

P1

p lime

Figure 4.3 Example of a simple process chain linked by resources

Figure 4.3 depicts a simple process chain that produces and consumes Quantity resources and uses an
implementation resource. The resources R1, R2, and R3 represent Quantity resources. Process P1 consumes
resource R1 and produces resource R2. R2 is then completely consumed by P2, which also requires the
implementation resource R4 for processing. Process P2 uses these two resources and produces resource R3. All of
this is accomplished along a linear time axis.

Table 4-2 shows the value of the Status attribute of each of the resources and processes used in Figure 4.3.
The time axis runs from left to right both in Figure 4.3 and in Table 4-2. Note that no process may execute until all
resources leading up to that process are in place. In other words, the job executes serially and sequentially. For
more information about the values of the Status attribute of resources, see Table 3-12. For more information about
the values of the Status attribute of processes, see Table 3-3.

Table 4-2 Examples of resource and process states in the case of simple process routing

Object Status before running P1 during running P1 after running Pl, during P2 after P2
before P2
resource R1 Available InUse Unavailable Unavailable | Unavailable
resource R2 Unavailable Unavailable Available InUse Unavailable
resource R3 Unavailable Unavailable Unavailable Unavailable | Available
resource R4 Available Available Available InUse Available
process P1 Waiting or Ready InProgress Completed Completed | Completed
process P2 Waiting or Ready Waiting or Ready Waiting or Ready InProgress | Completed

When the attribute Amount is used in connection with the quantifiable resources R1, R2, or R3 and their links, then
the controller must decide whether or not a resource is available by comparing the individual values. If the amounts
are used to define the availability, then the resource Status may be set to Available for all Quantity resources. Note
that when the value of the Status attribute of the resource is Unavailable, the resource is not available even if a
sufficient amount is specified.

If amounts are specified in the resource element, they represent the actual available amount. If they are not
specified, the actual amount is unknown, and it is assumed that the process will consume the entire resource.
Amounts of PhysicalLink elements must be specified for output resources that represent the intended production
amount. The specification of the Amount attribute for input resources is not required, although it can be specified.
If the controller cannot determine the amounts, this constitutes a JDF content error, which is logged by error
handling. This process is described in Section 4.6 Error Handling.

If a process in a serial processing run does not finish successfully, the final process status is designated as
aborted. In an aborted job, only a part of the intended production may be available. If this occurs, the actual
produced amount is logged into the audit pool by a resource audit element.

4.3.2 Partial Processing of Nodes with Partitioned Resources

JDF nodes themselves may not be partitioned, although the input and output resources may. If the input and output
ResourceLinks reference one or more individual partitions, the Node executes using only the referenced
Resources.

Page 113

Page 114

If multiple input resources are input to a process, the resource with the highest granularity defines the partitioning.
For instance, a ConventionalPrinting process may consume a non-partitioned ConventionalPrintingParams, and
a set of Ink and ExposedMedia(Plate) resources that are partitioned by Separation. The partition granularity
will be defined by the Ink and ExposedMedia(Plate) resources to be Separation. The Separation partition set
is defined by the superset of all defined partition key values. If the Separation key values of Ink were Black and
Varnish, and the the Separation key values of ExposedMedia(Plate) were Black, the resulting set is Black and

Varnish.

The partition keys of both input and output restrict the process. If the partition keys are not identical, both must be
applied to restrict the node. If the partition keys are non-overlapping, e.g. in an Imposition node, where a RunList
based input partition is mapped to a sheet based output partition, the application must explicitily calculate the result.
The following examples illustrate the restriction algorithms:

Input Partition 1

Input Partition 2

Output Partition

Node Partition

Description

SheetName= - - SheetName= | If only the input is partitioned, the
”S1” "SI’ node partition is defined by the
input.
SheetName= - - SheetName= | If only the input is partitioned, the
”S1” ST’ node partition is defined by the
Separation= Separation= input.
”Cyan” ”Cyan”
SheetName= Separation= - SheetName= | The first input is partitioned by
”S1” ”Cyan” + ST’ SheetName and Separation which
Separation= Separation= Separation= defines the partition key
”Cyan” ”Black” Cyan” granularity. The second input is
(PartUsage= + partitioned by Separation only but
“Implicit”) SheetName= | has an implied SheetName and has
ST a larger but overlapping set of
Separation= separation values. The separation
”Black” value set is therefore defined by the
second key.
SheetName= - SheetName= | SheetName= | The input and output base
”S1” "SI’ "SI’ partitions are identical. The output
Separation= Separation= further restricts the partition.
”Cyan” ”Cyan”
SheetName= - SheetName= | error Input and output are not
”S1” 52" overlapping. This specifies the null
Separation= set.
”Cyan”
SheetName= Separation= - error This is an error and defines the null
”S1” ”Cyan” + set. The first input is partitioned by
Separation= Separation= SheetName and Separation which
”Magenta” ”Black” defines the partition key
granularity. The second input is
partitioned by Separation only and
has a larger but non-overlapping set
of separation values. The
separation value set is therefore the
null set.

Page 114

Page 115

SheetName= Separation= - error The first input is partitioned by

”S1” ”Cyan” + SheetName and Separation which

Separation= Separation= defines the partition key

”Cyan” ”Black” granularity. The second input is
(PartUsage= partitioned by Separation only but
“Explicit”) has no implied SheetName and

therefore has a non-overlapping set
of partition keys. The separation
value set is therefore defined by the

second key.
Runlndex="0~7" | - SheetName= special This specifies sheet s2, with all
7§27 PlacedObject elements with an Ord

in the range of 0 to 7. This special
case is important when RunList
entries occur multiply on different
imposition sheets.[RP158]

[RP159]

4.3.3 Overlapping Processing Using Pipes

Whereas pipes themselves are identified in the resource that represents the pipe, pipe dynamics are declared in the
resource links that reference the pipe. This allows multiple nodes to access one pipe, each of them with its own pipe
buffering parameters.

In some situations, resource linking is a continuous process rather than a chronological one. In other words, one
process may require the output resources of another process before that process has completely finished producing
them. The ability to accomplish this kind of resource transfer is known as overlapping processing, and it is
accomplished with the use of a mechanism known as pipes. Pipes are considered to be active if any process linking to
the pipe simultaneously consumes or produces that pipe resource.

Any resource may be transformed into a pipe ;
resource. All that is required is that the PipelD attribute - fﬁ Pipe Resources
be specified in the resource. Pipes of quantifiable
resources resemble reservoir tanks that hang between | A pipe resource Is SIMply an INPUT 10 @ Process
processes. Processes connected to the pipe via output | tnat can be exhausted and may be replenished.
links fill the tank with necessary resources, while Examples may include rolls of paper feeding
processes connected via input links deplete it (see Figure | jnto g press, ink well levels, fountain solution, or
4.4).. The level is' controlled by the PhysicaILink even proofing stock loaded into a proofer.
attributes PipeResume, PipePause, Another type of pipe resource in every-day
RemotePipeEndPause, and | yse is a “hot-folder” or “watched file.” Hot folders
RemotePipeEndResume (see Table 3-22). If none of | gre used to automate functions such as
Fhern are specified, any produced Qu_antity may be preflighting. When a file is saved to a hot-folder,
immediately consumed by the consuming end of the | pe system knows to automatically apply a
pipe. The unit of the buffers is defined by the Unit | defined process to the new file. When the folder
attribute of the resource. is emotv the brocessina stoos.

The two following diagrams show the ways in
which pipes mediate between the process producing the resource and the process consuming the resource. The
following optional attribute values are defined for pipes: PipePartIDKeys, PipePause, PipeResume,
RemotePipeEndPause, and RemotePipeEndResume. The latter two—RemotePipeEndPause and
RemotePipeEndResume—are use to control the level in context with pipe command messages which will be
described in Section 4.3.2.2 Dynamic Pipes. The specified value of each of these attributes in any given node
dictates the levels at which a pipe should resume or pause execution. Figure4.5 gives an example of a view on the
dynamics of a pipe resource. The available level of the pipe resource, represented as R2, and the availability status
of two entity resources, represented as R1 and R3, are changing along a consistent time line. Below the
progressions of these resources is the status of two processes—P1 and P2. P1 represents the process producing the

Page 115

Page 116

pipe resource and P2 represents the process consuming that resource. The resource status of a active pipe (here R2)
is defined to be Status = InUse (see also Table 3-12).

Pipe Resource R2

PipePause = maximum (of output, P7)

PipeResume (of output, P1)

Supply
Level

PipeResume (of input, P2)

PipePause (of input, P2)

Figure 4.4 Example of a Pipe resource linking two processes

Figure 4.4 is a view on the structure and Figure4.5 a view on the dynamics of the pipe example considered here. R1
represents an input resource for P1, which feeds into the intermediate pipe resource R2. Once the tank R2 is filled to
the predetermined level, it is used as the input resource for P2, which in turn produces output resource R3.

‘Available
R1 Unavailable | |,

Levels amount
output PipePause

R2

InUse

R2 Unavailable |

Available >
R3 Unavailable

v

InProgress Completed

P1 Waiting .or.
Ready Stopped

Completed >

InProgress

P2 Waiting .or.

Ready Time

Start End

Figure4.5 Example of status transitions in case of overlapping processing

Resource linking through pipes is controlled through the specification of the PipePause and PipeResume
attributes. The intended amount of a resource must be specified in advance in the output link. Whenever the level
representing the available quantity of the pipe resource exceeds the PipePause level of the output link, the process
P1 is halted (Status = Stopped) so that the process does not overproduce. Once the level falls below the
PipeResume value, the process P1 resumes execution. P1 is completed when it has produced the intended amount.
Once P1 has performed its task, the resources still in the pipe are consumed by the subsequent process without level
control. In other words, after a process filling a pipe buffer has completed, pipe buffering becomes disabled.

Conversely, if the level representing the actual amount exceeds the PipeResume level of the input link, P2 can
start or resume execution. If it falls below the PipePause level, P2 is halted (Status = Stopped) unless the

Page 116

Page 117

intended amount of the pipe resource R2 has already been produced. Then the PipePause level is ignored and the
pipe resource is completely consumed.

In the case of output links, the PipeResume value must be smaller than the PipePause value, whereas in the
case of input links, the PipeResume value must be greater than the PipePause value. If PipePause is specified for
an input or an output link and PipeResume is not specified, the related process may run into a deadlock state. In other
words, the process stops and cannot resume execution automatically. Once a process is stopped under these
circumstances it can only be resumed manually or by sending a pipe control message for resumption that allows
interconnected execution control (halting and resumption of processes by pipe control messages is described in Section
5.5.3 Pipe Control). If the attributes PipeResume or PipePause of links to pipe resources are not specified, the
controller is responsible when the linked processes start and stop in dependence of the level.

4.3.3.1 Pipes of Partitionable Resources

Pipes of partitionable resources may also define the granularity of the resources that are considered to be one part. To
accomplish this, the PipePartIDKeys attribute must be specified in the appropriate ResourceLink element. For
instance, a partitioned ImageSetting process may be defined for multiple sheet separations, but a complete set
containing all separations of both sides of a single sheet should be sent to the pressroom as one pipe request. In this
case, the value of the PartIDKeys attribute of the ExposedMedia resource would be SheetName Side Separation and
the value of the PipePartIDKeys attribute of the resource link to the pipe would be SheetName.

4.3.3.2 Dynamic Pipes

In addition to abstractly declaring pipe properties, JMF provides pipe messages that allow dynamic control of pipes.
Dynamic pipes can be used to model situations where the required amount of resources is not known beforehand but
becomes known during processing. An example of this behavior is a long press run where new plates are required
during a press run because of quality deterioration. The exact point in time where quality becomes unacceptable is
not predetermined and may even vary from separation to separation. Dynamic pipes provide the flexibility to adjust
to changing situations of this nature.

Dynamic pipes provide a PipeURL attribute that allows dynamic requests for a status change of the pipe while a
process is executing. Dynamic requests use JMF pipe control messages (see Section 5.5.3 Pipe Control) sent to
another controller whose URL address is specified by the PipeURL attribute of the respective resource link.
Depending on the values of the resource link's Usage attribute, the following actions are possible:

e Input — The consumer sends a PipePull message to its PipeURL in order to request additional resources or a
PipePause to halt production by the creator. The consumer sends a PipeClose message to the producer if
the consumer does not require any further resources.

e QOutput — The creator sends a PipePush message to its PipeURL in order to deliver additional resources or a
PipePause to halt consumption by the consumer.

When dynamic pipes are used—i.e., when the PipeURL attribute is specified—the pipe buffering parameters
RemotePipeEndResume and RemotePipeEndPause define the buffering parameters of the remote (controlled)
end. PipeResume and PipePause, meanwhile, define the buffering parameters of the local node as described in
Section 4.3.2. The buffering parameters of a non-dynamic pipe may control the process that contains the resource link,
whereas the buffering parameters of a dynamic pipe control the process